Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 August 2021 | Story Ruan Bruwer | Photo Roger Sedres (Gallo Images)
Louzanne Coetzee and her guide Estean Badenhorst won the silver medal in the 1 500 m in a new African time at the Paralympics in Tokyo on Monday.

It’s been eight years of waiting, but Louzanne Coetzee will finally hang a medal around her neck, and this on the biggest sporting stage in the world.

Coetzee won the silver medal in the 1 500 m women’s T11 final at the Paralympics in Tokyo on Monday (30 August 2021) morning. In the process, she and her guide, Estean Badenhorst, set a new African record (4:40.96).

They are both former University of the Free State (UFS) students, and Coetzee is a resident on the Bloemfontein Campus. 

“I have been competing for eight years and this is my first medal. I’m just overwhelmed. I couldn’t have asked for a better race, a better guide, and better preparation. I’m just very thankful for how everything went down,” Coetzee said.
The race took place at 32 degrees with a humidity percentage of 70 plus. Coetzee’s time was only 2.04 seconds off the previous world record. 

She has had a stunning Games so far. In Sunday’s heat, she improved her personal best from 4:51.65 to 4:49.24 and ran another eight seconds quicker on Monday.

It was also a personal triumph for Coetzee, who experienced the disappointment of being disqualified five years ago at the Rio Games, after a ruling that her guide had stepped in front of her. 

Prof Francis Petersen, UFS Rector and Vice-Chancellor, saluted Coetzee. “We are tremendously proud of what she has achieved throughout her athletics career. She has represented the country numerous times at international sport events and winning a silver medal and setting a new African record is the culmination of hard work and exceptional endurance.” 

“The entire university community was rooting for her; she has done us and her country extremely proud,” Prof Petersen said.

Coetzee still has the T12 marathon on Sunday on her schedule.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept