Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2021 | Story Nonsindiso Qwabe | Photo Sonia Small (Kaleidoscope Studios)
New member of the Pontifical Academy of Social Sciences - Prof Pearl Sithole

Social scientist and Vice-Principal: Academic and Research on the Qwaqwa Campus, Prof Pearl Sithole, was appointed by Pope Francis as a member of the Pontifical Academy of Social Sciences for her stellar work in social sciences. 
Academicians are appointed by the Pope on the basis of their competencies in the social sciences and their moral integrity.

Prof Sithole said she was looking forward to sharing meaning and impact with the world through a space dedicated to the social sciences. “It’s a great honour. I’m feeling really humbled. The social sciences and humanities are a hugely necessary space to make meaning of the world, but for some reason, in the pecking order, they were relegated to a space that is thought of last. This appointment is to a dedicated space – to say, let’s look at issues through that lens.”
The Pontifical Academy of Social Sciences was established by Pope John Paul II in 1994 with the aim of promoting the study and progress of the social sciences, primarily economics, sociology, law, and political science. To achieve its aims, the academy organises conferences and workshops on specific themes, promotes scientific surveys and research, and publishes publications. 

Prof Sithole said the academy provides a wonderful way of reminding academicians of the importance of relating science to the real world. 

“What I like about it is that it demystifies science. It says, be excellent in your field but be able to converse for impact, be able to come to a forum that worries about specific issues, it still encourages publications and pure science/scientific endeavours, advancements in their field, but sometimes people come together to look at an issue from various angles. For me, it’s such a wonderful way of saying we must remember that we are doing science in order to relate to the world, not just to understand for the sake of understanding,” she said.

Make a genuine effort to make a difference in whatever you do, and your work will speak for itself.- Prof Pearl Sithole. 

The appointment also coincides with Women’s Month, and Prof Sithole said she takes great pride in her womanhood. 

“I am a mother and a daughter. I strive to pinpoint problems and offer solutions. I am a social scientist. I’ve made it a mission to study how systems affect people by infusing humanity within the systems. Women have been made to be apologetic about the qualities that define us as women, which we bring especially into leadership. I don’t apologise for my emotions. I don’t apologise for my multitasking abilities; however, I do feel that women are often abused for having these.”

What would you say makes you a UFS woman of quality, impact, and care?

I am the sort of person who strongly believes that your work should speak for itself. I don’t work for accolades. My approach to life is to work genuinely to make a difference, and your work will speak for itself. If you wake up every day to genuinely make a difference, it is enough. You get a lot of satisfaction in life, and you sleep better because you know you have given it your best, and you know that sometimes you can actually see it making a difference.

What advice would you give to the 15-year-old you?

I would say, be true to yourself. At a younger age, you want to chase all sorts of aspirations that look glamorous, which is not a bad thing, because you have to have appetite; but in your appetite for excellence and as someone who lives for a purpose, be true to yourself. Be able to design a life that aspires, but at the same time be adaptable to what you discover your strengths to be.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept