Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2021 | Story Nonsindiso Qwabe | Photo Sonia Small (Kaleidoscope Studios)
New member of the Pontifical Academy of Social Sciences - Prof Pearl Sithole

Social scientist and Vice-Principal: Academic and Research on the Qwaqwa Campus, Prof Pearl Sithole, was appointed by Pope Francis as a member of the Pontifical Academy of Social Sciences for her stellar work in social sciences. 
Academicians are appointed by the Pope on the basis of their competencies in the social sciences and their moral integrity.

Prof Sithole said she was looking forward to sharing meaning and impact with the world through a space dedicated to the social sciences. “It’s a great honour. I’m feeling really humbled. The social sciences and humanities are a hugely necessary space to make meaning of the world, but for some reason, in the pecking order, they were relegated to a space that is thought of last. This appointment is to a dedicated space – to say, let’s look at issues through that lens.”
The Pontifical Academy of Social Sciences was established by Pope John Paul II in 1994 with the aim of promoting the study and progress of the social sciences, primarily economics, sociology, law, and political science. To achieve its aims, the academy organises conferences and workshops on specific themes, promotes scientific surveys and research, and publishes publications. 

Prof Sithole said the academy provides a wonderful way of reminding academicians of the importance of relating science to the real world. 

“What I like about it is that it demystifies science. It says, be excellent in your field but be able to converse for impact, be able to come to a forum that worries about specific issues, it still encourages publications and pure science/scientific endeavours, advancements in their field, but sometimes people come together to look at an issue from various angles. For me, it’s such a wonderful way of saying we must remember that we are doing science in order to relate to the world, not just to understand for the sake of understanding,” she said.

Make a genuine effort to make a difference in whatever you do, and your work will speak for itself.- Prof Pearl Sithole. 

The appointment also coincides with Women’s Month, and Prof Sithole said she takes great pride in her womanhood. 

“I am a mother and a daughter. I strive to pinpoint problems and offer solutions. I am a social scientist. I’ve made it a mission to study how systems affect people by infusing humanity within the systems. Women have been made to be apologetic about the qualities that define us as women, which we bring especially into leadership. I don’t apologise for my emotions. I don’t apologise for my multitasking abilities; however, I do feel that women are often abused for having these.”

What would you say makes you a UFS woman of quality, impact, and care?

I am the sort of person who strongly believes that your work should speak for itself. I don’t work for accolades. My approach to life is to work genuinely to make a difference, and your work will speak for itself. If you wake up every day to genuinely make a difference, it is enough. You get a lot of satisfaction in life, and you sleep better because you know you have given it your best, and you know that sometimes you can actually see it making a difference.

What advice would you give to the 15-year-old you?

I would say, be true to yourself. At a younger age, you want to chase all sorts of aspirations that look glamorous, which is not a bad thing, because you have to have appetite; but in your appetite for excellence and as someone who lives for a purpose, be true to yourself. Be able to design a life that aspires, but at the same time be adaptable to what you discover your strengths to be.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept