Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Carlien Pohl-Albertyn, a successful scientist, is living her dream job, as she gets to pursue her passion for microbiology; a career she wanted to pursue ever since Grade 10.

Prof Carlien Pohl-Albertyn, a professor of Microbiology in the Department of Microbiology and Biochemistry, is the holder of the SARChI Chair in Pathogenic Yeasts at the University of the Free State (UFS). She is leading the Pathogenic Yeast Research Group, studying pathogenic yeast infections and necessary treatment options and bringing hope to many immunosuppressed patients battling HIV/Aids, cancer, diabetics, and other diseases. She also recently co-authored an article on the incidence of fungal infections in COVID-19 patients. 

“This is my dream job, as I get to pursue my passion for microbiology,” says Prof Pohl-Albertyn, who already knew as early as Grade 10 that she wanted to become a microbiologist. “I have always been fascinated by the natural world and have known since childhood that I would become a scientist,” she says. 

An interview with Prof Pohl-Albertyn reveals more about the persons who inspired her, her view on the development of women, and how she approaches her work. 

Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

“The first woman who instilled a love for the biological sciences in me was Miss Steyn, my high school Biology teacher. She had a passion for teaching that inspired me to become a microbiologist.”

Prof Pohl-Albertyn, however, states that there were many other women who constantly inspired her to be a better person. 

“My mother inspires me to take responsibility for my choices; my mother-in-law inspires me to be kinder to others; and my best friends’ mothers inspire me to persevere, even when things are difficult.”

“I am also inspired by my female friends, Ezelle van den Heever, who has shown me that there is always a plan to be made to solve a problem; Trudi O’Neill, who manages to balance high-level research, teaching, and administration with her home life; Alicia Sherriff, from whom I am learning to be more emotionally intelligent; and Janine Allen, who has expanded my horizons and regularly shows me how to look at the world in a completely different way.”

What is your response to current challenges faced by women and available platforms for women development?

“Coming from a fairly male-dominated cultural background, I realise that I have been very privileged to not experience challenges just because I am a woman. I have been able to study and work in a field that values women and men equally and have chosen a very capable and extremely supportive husband, who sees me as an equal.”

She, however, realises that this is not the case for many women, and understands that there are women who were not able to follow their dreams and make their own life choices.

Prof Pohl-Albertyn believes that any opportunity for women to overcome challenges should be encouraged, as a society will ultimately be better if everyone is able to fulfil their greatest potential.

What advice would you give to the 15-year-old you?

This successful scientist, spouse, mother of two sons, daughter, friend, and mentor to many, says that she will advise her 15-year-old self to do everything the way that she has been doing it. “I do not regret anything and would not change my life in any way,” she says. 

What would you say makes you a woman of quality, impact, and care?

“I am a person of quality because of my integrity, work ethic, and commitment to my responsibilities – something that is easy if you enjoy what you do every day.”

“I am a person of impact because of the influence I have on my colleagues, who I always treat with respect, and my students, who I teach to the best of my abilities, and which I hope will serve them well in their careers.”

“I am a person of care because I value the contributions of my colleagues and students to my own growth and development,” remarks Prof Pohl-Albertyn.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept