Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Carlien Pohl-Albertyn, a successful scientist, is living her dream job, as she gets to pursue her passion for microbiology; a career she wanted to pursue ever since Grade 10.

Prof Carlien Pohl-Albertyn, a professor of Microbiology in the Department of Microbiology and Biochemistry, is the holder of the SARChI Chair in Pathogenic Yeasts at the University of the Free State (UFS). She is leading the Pathogenic Yeast Research Group, studying pathogenic yeast infections and necessary treatment options and bringing hope to many immunosuppressed patients battling HIV/Aids, cancer, diabetics, and other diseases. She also recently co-authored an article on the incidence of fungal infections in COVID-19 patients. 

“This is my dream job, as I get to pursue my passion for microbiology,” says Prof Pohl-Albertyn, who already knew as early as Grade 10 that she wanted to become a microbiologist. “I have always been fascinated by the natural world and have known since childhood that I would become a scientist,” she says. 

An interview with Prof Pohl-Albertyn reveals more about the persons who inspired her, her view on the development of women, and how she approaches her work. 

Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

“The first woman who instilled a love for the biological sciences in me was Miss Steyn, my high school Biology teacher. She had a passion for teaching that inspired me to become a microbiologist.”

Prof Pohl-Albertyn, however, states that there were many other women who constantly inspired her to be a better person. 

“My mother inspires me to take responsibility for my choices; my mother-in-law inspires me to be kinder to others; and my best friends’ mothers inspire me to persevere, even when things are difficult.”

“I am also inspired by my female friends, Ezelle van den Heever, who has shown me that there is always a plan to be made to solve a problem; Trudi O’Neill, who manages to balance high-level research, teaching, and administration with her home life; Alicia Sherriff, from whom I am learning to be more emotionally intelligent; and Janine Allen, who has expanded my horizons and regularly shows me how to look at the world in a completely different way.”

What is your response to current challenges faced by women and available platforms for women development?

“Coming from a fairly male-dominated cultural background, I realise that I have been very privileged to not experience challenges just because I am a woman. I have been able to study and work in a field that values women and men equally and have chosen a very capable and extremely supportive husband, who sees me as an equal.”

She, however, realises that this is not the case for many women, and understands that there are women who were not able to follow their dreams and make their own life choices.

Prof Pohl-Albertyn believes that any opportunity for women to overcome challenges should be encouraged, as a society will ultimately be better if everyone is able to fulfil their greatest potential.

What advice would you give to the 15-year-old you?

This successful scientist, spouse, mother of two sons, daughter, friend, and mentor to many, says that she will advise her 15-year-old self to do everything the way that she has been doing it. “I do not regret anything and would not change my life in any way,” she says. 

What would you say makes you a woman of quality, impact, and care?

“I am a person of quality because of my integrity, work ethic, and commitment to my responsibilities – something that is easy if you enjoy what you do every day.”

“I am a person of impact because of the influence I have on my colleagues, who I always treat with respect, and my students, who I teach to the best of my abilities, and which I hope will serve them well in their careers.”

“I am a person of care because I value the contributions of my colleagues and students to my own growth and development,” remarks Prof Pohl-Albertyn.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept