Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Carlien Pohl-Albertyn, a successful scientist, is living her dream job, as she gets to pursue her passion for microbiology; a career she wanted to pursue ever since Grade 10.

Prof Carlien Pohl-Albertyn, a professor of Microbiology in the Department of Microbiology and Biochemistry, is the holder of the SARChI Chair in Pathogenic Yeasts at the University of the Free State (UFS). She is leading the Pathogenic Yeast Research Group, studying pathogenic yeast infections and necessary treatment options and bringing hope to many immunosuppressed patients battling HIV/Aids, cancer, diabetics, and other diseases. She also recently co-authored an article on the incidence of fungal infections in COVID-19 patients. 

“This is my dream job, as I get to pursue my passion for microbiology,” says Prof Pohl-Albertyn, who already knew as early as Grade 10 that she wanted to become a microbiologist. “I have always been fascinated by the natural world and have known since childhood that I would become a scientist,” she says. 

An interview with Prof Pohl-Albertyn reveals more about the persons who inspired her, her view on the development of women, and how she approaches her work. 

Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

“The first woman who instilled a love for the biological sciences in me was Miss Steyn, my high school Biology teacher. She had a passion for teaching that inspired me to become a microbiologist.”

Prof Pohl-Albertyn, however, states that there were many other women who constantly inspired her to be a better person. 

“My mother inspires me to take responsibility for my choices; my mother-in-law inspires me to be kinder to others; and my best friends’ mothers inspire me to persevere, even when things are difficult.”

“I am also inspired by my female friends, Ezelle van den Heever, who has shown me that there is always a plan to be made to solve a problem; Trudi O’Neill, who manages to balance high-level research, teaching, and administration with her home life; Alicia Sherriff, from whom I am learning to be more emotionally intelligent; and Janine Allen, who has expanded my horizons and regularly shows me how to look at the world in a completely different way.”

What is your response to current challenges faced by women and available platforms for women development?

“Coming from a fairly male-dominated cultural background, I realise that I have been very privileged to not experience challenges just because I am a woman. I have been able to study and work in a field that values women and men equally and have chosen a very capable and extremely supportive husband, who sees me as an equal.”

She, however, realises that this is not the case for many women, and understands that there are women who were not able to follow their dreams and make their own life choices.

Prof Pohl-Albertyn believes that any opportunity for women to overcome challenges should be encouraged, as a society will ultimately be better if everyone is able to fulfil their greatest potential.

What advice would you give to the 15-year-old you?

This successful scientist, spouse, mother of two sons, daughter, friend, and mentor to many, says that she will advise her 15-year-old self to do everything the way that she has been doing it. “I do not regret anything and would not change my life in any way,” she says. 

What would you say makes you a woman of quality, impact, and care?

“I am a person of quality because of my integrity, work ethic, and commitment to my responsibilities – something that is easy if you enjoy what you do every day.”

“I am a person of impact because of the influence I have on my colleagues, who I always treat with respect, and my students, who I teach to the best of my abilities, and which I hope will serve them well in their careers.”

“I am a person of care because I value the contributions of my colleagues and students to my own growth and development,” remarks Prof Pohl-Albertyn.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept