Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Maryke Labuschagne, a successful scientist who is doing great work to enhance food security on the African continent, admires women who have made an impact, often in male-dominated environments.

Maryke Labuschagne, Professor in Plant Breeding at the University of the Free State (UFS), is known to many for her work to enhance food security. 

She holds the National Research Foundation’s South African Research Chairs Initiative (SARChI) Chair on Disease Resistance and Quality in Field Crops, travelling all over Africa to do research on the genetic improvement of staple food crops in communities. Through decades of research and collaboration, she has also contributed to the establishment of a strong network of researchers on the continent.

During an interview in celebration of Women’s Month, Prof Labuschagne talks about her experiences as a young scientist and how she believes young female researchers should be supported and nurtured. 

Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

Besides the scientists she had the opportunity to work with in countries such as Zimbabwe, Zambia, Uganda, Ghana, Ethiopia, Kenya, Lesotho, Eswatini, Tunisia, and Ethiopia, she also met women who are working the fields to produce crops for their families, raising their children, and living in difficult conditions. “These women, who make it work against all odds, inspire me,” says Prof Labuschagne.

Other women she admires and who have made an impact – often in male-dominated environments – include role models from the past, such as former UK prime minister, Margaret Thatcher; physicist Marie Curie, who was far ahead of her time; and American geneticist Barbara McClintock, who won a Nobel Prize in 1983. 

What is your response to current challenges faced by women and available platforms for women development?
 
“When I started working in the Faculty of Natural and Agricultural Sciences at the UFS in 1989, it was a different world. It was a totally (white) male-dominated environment. The number of women scientists could be counted on the fingers of one hand, and they were often not given the same opportunities as their male counterparts,” she recalls.

Prof Labuschagne continues: “With women having so many opportunities today, it is now totally different.”

She believes women will always have a double burden – being responsible for a family and having to compete on an equal footing with male colleagues in the workplace. There are now, however, many platforms and support systems specifically for women, and she encourages women to make use of every available form of assistance they can get.

I would say you can have it all. Work hard, believe in yourself, follow your dreams, focus on your goals, see the opportunities – not the challenges, and leave a legacy. – Prof Maryke Labuschagne
 
What advice would you give to the 15-year-old you?

“I would say you can have it all. Work hard, believe in yourself, follow your dreams, focus on your goals, see the opportunities – not the challenges, and leave a legacy.”

She is convinced that young women can have a family and a career, even if they believe it is not possible. 
 
What would you say makes women of quality, impact, and care?
 
“I see many women at the UFS making their mark, making an impact in their chosen fields.”

According to Prof Labuschagne, what would have been unthinkable just a few decades ago, such as women serving as deans and in top management positions, is now a reality. 

“I see young female researchers boldly taking on the world, believing in themselves and their abilities, and knowing they will be successful.” She states that each of these women should be supported and nurtured, as they will have a huge influence on the course of the university’s future.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept