Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 August 2021 | Story Leonie Bolleurs | Photo Supplied
Prof Maryke Labuschagne, a successful scientist who is doing great work to enhance food security on the African continent, admires women who have made an impact, often in male-dominated environments.

Maryke Labuschagne, Professor in Plant Breeding at the University of the Free State (UFS), is known to many for her work to enhance food security. 

She holds the National Research Foundation’s South African Research Chairs Initiative (SARChI) Chair on Disease Resistance and Quality in Field Crops, travelling all over Africa to do research on the genetic improvement of staple food crops in communities. Through decades of research and collaboration, she has also contributed to the establishment of a strong network of researchers on the continent.

During an interview in celebration of Women’s Month, Prof Labuschagne talks about her experiences as a young scientist and how she believes young female researchers should be supported and nurtured. 

Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

Besides the scientists she had the opportunity to work with in countries such as Zimbabwe, Zambia, Uganda, Ghana, Ethiopia, Kenya, Lesotho, Eswatini, Tunisia, and Ethiopia, she also met women who are working the fields to produce crops for their families, raising their children, and living in difficult conditions. “These women, who make it work against all odds, inspire me,” says Prof Labuschagne.

Other women she admires and who have made an impact – often in male-dominated environments – include role models from the past, such as former UK prime minister, Margaret Thatcher; physicist Marie Curie, who was far ahead of her time; and American geneticist Barbara McClintock, who won a Nobel Prize in 1983. 

What is your response to current challenges faced by women and available platforms for women development?
 
“When I started working in the Faculty of Natural and Agricultural Sciences at the UFS in 1989, it was a different world. It was a totally (white) male-dominated environment. The number of women scientists could be counted on the fingers of one hand, and they were often not given the same opportunities as their male counterparts,” she recalls.

Prof Labuschagne continues: “With women having so many opportunities today, it is now totally different.”

She believes women will always have a double burden – being responsible for a family and having to compete on an equal footing with male colleagues in the workplace. There are now, however, many platforms and support systems specifically for women, and she encourages women to make use of every available form of assistance they can get.

I would say you can have it all. Work hard, believe in yourself, follow your dreams, focus on your goals, see the opportunities – not the challenges, and leave a legacy. – Prof Maryke Labuschagne
 
What advice would you give to the 15-year-old you?

“I would say you can have it all. Work hard, believe in yourself, follow your dreams, focus on your goals, see the opportunities – not the challenges, and leave a legacy.”

She is convinced that young women can have a family and a career, even if they believe it is not possible. 
 
What would you say makes women of quality, impact, and care?
 
“I see many women at the UFS making their mark, making an impact in their chosen fields.”

According to Prof Labuschagne, what would have been unthinkable just a few decades ago, such as women serving as deans and in top management positions, is now a reality. 

“I see young female researchers boldly taking on the world, believing in themselves and their abilities, and knowing they will be successful.” She states that each of these women should be supported and nurtured, as they will have a huge influence on the course of the university’s future.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept