Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education at the University of the Free State (UFS) and she believes there can be no greater dividend than to invest in optimal nutrition for infants and children. They are the future

Opinion article by Dr Chantell Witten, Division of Health Professions Education, University of the Free State.


World Breastfeeding Week is celebrated every year from 1-7 August. In South Africa, it coincides with Women’s Month and gives us the opportunity to reflect on how far we have come and how far we still have to go to achieve gender equity in different spheres of life. Even more reason for us in the academic sphere to stop and think about the areas of support that may still need attention and effort to correct.

In the context of protecting breastfeeding this would speak to the Code of Good Conduct in the Labour Act which affords pregnant and breastfeeding women protection and support. In extreme cases it means protection from exposure to hazardous substances, but in the general setting of the work environment this relates to workplace support for a private and safe place to express breastmilk. One institution made headlines when a staff member was secretly videoed while she was expressing breastmilk. What is also needed is to put in place a policy that guides on how university property such as a fridge may or may not be used to store expressed breastmilk, or how to deal with a manager who insists on holding meetings in a woman’s scheduled milk-expressing time slots. The law may indicate that you are entitled to two 30-minute time slots to express but it is quite another issue to get your colleagues to accommodate or respect your biological needs.

Protecting breastfeeding 

Besides the protection of employees, the government in its commitment to improve child health and nutrition has committed to protect breastfeeding from the undue influence of the infant-formula industry by implementing the recommendations of the International Code for the Marketing of Breastmilk Substitutes. South Africa approved the Regulations Relating to Foodstuff for Infants and Young Children (R991) to control the marketing and promotion of infant formula by limiting how the product may be marketed and how the industry may engage with the public and child health and development professionals, in particular. 

While many are aware of the prohibition to advertise or to promote and distribute free or incentivised sales of infant formula, many may not be aware of the limitations placed on academics and researchers. The academic and research fraternity has had a long and conflicted relationship and history with the infant-formula industry. Many departments and individual researchers have received funding, conference sponsorship and gifts from the infant-formula industry. In the early 2000s at the height of the HIV epidemic, the Department of Health recommended that women living with HIV should not breastfeed and instead provided six months of free formula milk, inadvertently implying that health professionals approved of infant formula. While the national Department of Health has since stopped the distribution of free infant formula through the programme for the prevention of mother-to-child transmission of HIV (PMTCT) from 2011, many health professionals trained in the early years continue giving mixed messages to mothers and display limited skills to promote and support breastfeeding.

So how do we protect breastfeeding in the academic setting? 
As more women enter academia, managers and the institutional leadership need to be cognisant and purposeful in developing a breastfeeding culture by granting women the protections afforded them by the Labour Law. Furthermore, in all spheres of academia and research, and as an institution, we need to guard against conflict of interest and conflicted relationships with the infant-formula industry. We need to do due diligence by raising the awareness of R991. All child health and development professionals should be acquainted with R991 through their curricula, and we should individually and collectively be accountable in our conduct to protect, promote and support breastfeeding as a human right, an investment in health and development, and for a sustainable future. There can be no greater dividend than to invest in optimal nutrition for infants and our children. They are the future.  

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept