Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education at the University of the Free State (UFS) and she believes there can be no greater dividend than to invest in optimal nutrition for infants and children. They are the future

Opinion article by Dr Chantell Witten, Division of Health Professions Education, University of the Free State.


World Breastfeeding Week is celebrated every year from 1-7 August. In South Africa, it coincides with Women’s Month and gives us the opportunity to reflect on how far we have come and how far we still have to go to achieve gender equity in different spheres of life. Even more reason for us in the academic sphere to stop and think about the areas of support that may still need attention and effort to correct.

In the context of protecting breastfeeding this would speak to the Code of Good Conduct in the Labour Act which affords pregnant and breastfeeding women protection and support. In extreme cases it means protection from exposure to hazardous substances, but in the general setting of the work environment this relates to workplace support for a private and safe place to express breastmilk. One institution made headlines when a staff member was secretly videoed while she was expressing breastmilk. What is also needed is to put in place a policy that guides on how university property such as a fridge may or may not be used to store expressed breastmilk, or how to deal with a manager who insists on holding meetings in a woman’s scheduled milk-expressing time slots. The law may indicate that you are entitled to two 30-minute time slots to express but it is quite another issue to get your colleagues to accommodate or respect your biological needs.

Protecting breastfeeding 

Besides the protection of employees, the government in its commitment to improve child health and nutrition has committed to protect breastfeeding from the undue influence of the infant-formula industry by implementing the recommendations of the International Code for the Marketing of Breastmilk Substitutes. South Africa approved the Regulations Relating to Foodstuff for Infants and Young Children (R991) to control the marketing and promotion of infant formula by limiting how the product may be marketed and how the industry may engage with the public and child health and development professionals, in particular. 

While many are aware of the prohibition to advertise or to promote and distribute free or incentivised sales of infant formula, many may not be aware of the limitations placed on academics and researchers. The academic and research fraternity has had a long and conflicted relationship and history with the infant-formula industry. Many departments and individual researchers have received funding, conference sponsorship and gifts from the infant-formula industry. In the early 2000s at the height of the HIV epidemic, the Department of Health recommended that women living with HIV should not breastfeed and instead provided six months of free formula milk, inadvertently implying that health professionals approved of infant formula. While the national Department of Health has since stopped the distribution of free infant formula through the programme for the prevention of mother-to-child transmission of HIV (PMTCT) from 2011, many health professionals trained in the early years continue giving mixed messages to mothers and display limited skills to promote and support breastfeeding.

So how do we protect breastfeeding in the academic setting? 
As more women enter academia, managers and the institutional leadership need to be cognisant and purposeful in developing a breastfeeding culture by granting women the protections afforded them by the Labour Law. Furthermore, in all spheres of academia and research, and as an institution, we need to guard against conflict of interest and conflicted relationships with the infant-formula industry. We need to do due diligence by raising the awareness of R991. All child health and development professionals should be acquainted with R991 through their curricula, and we should individually and collectively be accountable in our conduct to protect, promote and support breastfeeding as a human right, an investment in health and development, and for a sustainable future. There can be no greater dividend than to invest in optimal nutrition for infants and our children. They are the future.  

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept