Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education at the University of the Free State (UFS) and she believes there can be no greater dividend than to invest in optimal nutrition for infants and children. They are the future

Opinion article by Dr Chantell Witten, Division of Health Professions Education, University of the Free State.


World Breastfeeding Week is celebrated every year from 1-7 August. In South Africa, it coincides with Women’s Month and gives us the opportunity to reflect on how far we have come and how far we still have to go to achieve gender equity in different spheres of life. Even more reason for us in the academic sphere to stop and think about the areas of support that may still need attention and effort to correct.

In the context of protecting breastfeeding this would speak to the Code of Good Conduct in the Labour Act which affords pregnant and breastfeeding women protection and support. In extreme cases it means protection from exposure to hazardous substances, but in the general setting of the work environment this relates to workplace support for a private and safe place to express breastmilk. One institution made headlines when a staff member was secretly videoed while she was expressing breastmilk. What is also needed is to put in place a policy that guides on how university property such as a fridge may or may not be used to store expressed breastmilk, or how to deal with a manager who insists on holding meetings in a woman’s scheduled milk-expressing time slots. The law may indicate that you are entitled to two 30-minute time slots to express but it is quite another issue to get your colleagues to accommodate or respect your biological needs.

Protecting breastfeeding 

Besides the protection of employees, the government in its commitment to improve child health and nutrition has committed to protect breastfeeding from the undue influence of the infant-formula industry by implementing the recommendations of the International Code for the Marketing of Breastmilk Substitutes. South Africa approved the Regulations Relating to Foodstuff for Infants and Young Children (R991) to control the marketing and promotion of infant formula by limiting how the product may be marketed and how the industry may engage with the public and child health and development professionals, in particular. 

While many are aware of the prohibition to advertise or to promote and distribute free or incentivised sales of infant formula, many may not be aware of the limitations placed on academics and researchers. The academic and research fraternity has had a long and conflicted relationship and history with the infant-formula industry. Many departments and individual researchers have received funding, conference sponsorship and gifts from the infant-formula industry. In the early 2000s at the height of the HIV epidemic, the Department of Health recommended that women living with HIV should not breastfeed and instead provided six months of free formula milk, inadvertently implying that health professionals approved of infant formula. While the national Department of Health has since stopped the distribution of free infant formula through the programme for the prevention of mother-to-child transmission of HIV (PMTCT) from 2011, many health professionals trained in the early years continue giving mixed messages to mothers and display limited skills to promote and support breastfeeding.

So how do we protect breastfeeding in the academic setting? 
As more women enter academia, managers and the institutional leadership need to be cognisant and purposeful in developing a breastfeeding culture by granting women the protections afforded them by the Labour Law. Furthermore, in all spheres of academia and research, and as an institution, we need to guard against conflict of interest and conflicted relationships with the infant-formula industry. We need to do due diligence by raising the awareness of R991. All child health and development professionals should be acquainted with R991 through their curricula, and we should individually and collectively be accountable in our conduct to protect, promote and support breastfeeding as a human right, an investment in health and development, and for a sustainable future. There can be no greater dividend than to invest in optimal nutrition for infants and our children. They are the future.  

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept