Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Ruan Bruwer | Photo Varsity Sports
The UFS celebrates its 55-39 win over Stellenbosch University in the final of the Varsity Netball tournament. This is their fourth crown in eight years.

After losing to Stellenbosch University in the opening round of Varsity Netball, the University of the Free State (UFS) kept the trust and smashed the same opponents eight days later to lift the trophy.

The UFS netball team claimed their fourth crown – two more than any other team in the eight years of the competition – when they won the final by 55-39 in Stellenbosch on Monday night (30 August 2021).

This is the biggest victory margin in a final. The UFS team has now won all four finals in which they participated.
According to coach Burta de Kock, she did not say much to the players after their first-round loss by eight goals. It was their only defeat in nine matches.

“I left them alone and I knew they would fix what had to be fixed. We kept the trust the whole time.”

“The players promised one another before the final that they would bring their best to the court. We are blessed to have such wonderful players taking the lead and guiding and mentoring the youngsters,” De Kock said.

Captain Sikholiwe Mdletshe also mentioned the first encounter as the turning point. “We got the team together and decided to fight as an army. We never looked back.”

Khanyisa Chawane, who was the Player of the Match in both the final and semi-final, said, “We told ourselves we are going to a final and we are going to win it, and that is the mindset we came here with and what took us through.”

Prof Francis Petersen, UFS Rector and Vice-Chancellor, congratulated the champions. “Under the leadership of coach Burta de Kock and captain Sikholiwe Mdletshe, the team worked exceptionally hard to reach the top, and their commitment and courage paid off.” 

“Thank you also to the rest of the coaching staff. The final was spectacular, and we are proud of what they have achieved. I salute our champions on behalf of the entire university community,” Prof Petersen said.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept