Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2021 | Story Leonie Bolleurs | Photo Johan Barnard
Experimental farm
The Paradys Experimental Farm donated 428 bales of animal feed to farmers who lost veld in the Fauresmith and Tierpoort districts.

“I wish I had more to give.” These are the words of Johan Barnard, Junior Lecturer and manager on the Paradys Experimental Farm of the University of the Free State (UFS) after he donated the last of 428 bales of animal feed to a farmer from the Tierpoort area this morning (4 August 2021).

After large parts of the Paradys Experimental Farm were destroyed by veld fires three years ago and 24 famers came out to help fight the fire, Barnard believes in planting a surplus of food that would enable him to share with farmers in need. Last year, he donated bales of animal feed to farmers in the Hertzogville district whose veld was destroyed.

Sharing resources

More recently – less than a month ago – veld fires destroyed thousands of hectares of land in the Tierpoort and Fauresmith districts. Barnard, who helped to put out the fires and saw the destruction, decided to make the extra animal feed available to the farmers who needed feed for their animals.

Together with research and teaching and learning, the community is one of the university’s focus areas. “As a university, we are sharing our knowledge. The destruction brought about by the veld fires has created an opportunity where the university can also share its resources,” says Barnard.

When he made the decision to help, the feed was, however, still on the fields and had to be cut, processed, and baled. But where there is a will and a community that stand together, there is a way.

The farmers in the Koppieskraal district brought their tractors and machinery to cut, rake, and bale the sorghum and grass. BKB contributed fuel to cover the running costs of the tractors and machinery.

Once the animal feed was baled, Barnard contacted Jack Armour, operations manager at Free State Agriculture, who not only spread the word to farmers that animal feed was available, but also provided fuel to deliver the bales to the farms destroyed by fires. Since last week, volunteers have come to collect the animal feed and distribute it to the farmers.

Barnard, who believes it is difficult to put a price value on the animal feed provided by the university, says to the farmers who received it, the value of these bales is priceless.

A priceless gift

Besides the thousands of hectares of pasture destroyed during the raging fires, farmers also lost a significant number of sheep and cattle. When Leon Kruger, Lecturer in the Department of Animal Science, on the experimental farm, saw the devastation caused by the fires, he posted on Facebook that he was available to assist in treating the animals.

Together with two government veterinarians and a colleague from the Glen Agricultural College, Kruger drove hundreds of kilometres to farms in the south and southwestern Free State to help farmers treat animals affected by the fires.

He says they have treated more than 800 animals, including sheep and cattle. “We treated the animals one by one, administering antibiotics and pain medication, as well as ointment to the burned areas. This difficult ordeal was, however, a baptism of fire for all of us; we are not familiar with burn wounds. A friend in Australia helped to compile criteria to classify the different degrees of burn wounds and we treated the animals accordingly.”

“Seeing the suffering of the animals was one of the most difficult ordeals I had to experience,” states Kruger, who helped several farmers save their animals during this time where they have already lost so much.


News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept