Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS researchers receive awards from the NSTF
2008-06-04

The recipients of the two awards are, from the left: Prof. Jan van der Westhuizen, UFS Department of Chemistry, Dr Susan Bonnet, UFS Department of Chemistry, Prof. Thinus van der Merwe, FARMOVS-PAREXEL, Prof. Maryke Labuschagne, UFS Department of Plant Sciences, and Prof. Ken Swart, FARMOVS-PAREXEL.
Photo: Lacea Loader

  

UFS researchers receive awards from the NSTF   

The University of the Free State (UFS) last week received two prestigious awards from the National Science and Technology Forum (NSTF) during its tenth gala-awards ceremony held in Kempton Park.

Prof. Maryke Labuschagne from the Department of Plant Sciences at the UFS was the female recipient of the research capacity-development award over the last ten years. She received the award for her successful mentoring of black researchers and students. The award, sponsored by Eskom, includes a prize of R100 000 which will be used for research purposes.  

A team consisting of Prof. Jan van der Westhuizen and Dr Susan Bonnet from the Department of Chemistry at the UFS and Prof. Kenneth Swart and Prof. Thinus van der Merwe from FARMOVS–PAREXEL received the innovation award for an outstanding contribution to science, engineering and technology from either an individual or a team over the last ten years.
 
Prof. Labuschagne, an expert in the field of plant breeding and food security in Africa, received the award for her contribution to the training and development of black students and researchers in this field. Various black students successfully completed their postgraduate studies under her guidance at the UFS during the past ten years, with positive results.

Research by her South African students has led to a firmly entrenched research relationship between the Agricultural Research Council (ARC) and the UFS, while research by her local and international students has culminated in no less than 82 publications over the last decade.

It has also led to the establishment of collaboration agreements with universities and research institutes in Malawi, Kenya, Uganda and Tanzania – among others with the University of Malawi where Prof. Labuschagne and her students are involved in the International Programme in the Chemical Sciences (IPICS) of the Uppsala University in Sweden. The project focuses on the study of genetics and chemistry of tropical roots and tuber crops in Malawi. This has led to collaboration with international research organisations and has generated overseas funding.

The combined team from FARMOVS–PAREXEL and the UFS won an award for the synthesis of drug analogues used as reference products during the analysis of the drug concentration in blood, from existing and new drugs registered nationally and internationally.

The project resulted in capacity building in synthetic organic chemistry, mass spectrometry and chromatography: Five master’s degrees were completed, seven are in progress, and six postgraduate students commenced with Ph.D.’s.

The skills transferred during this project are already being applied to examine the properties of indigenous medicinal plants as part of the recently established UFS novel drugs and bioactive compound cluster.

Applied Biosystems, the Canadian manufacturer of mass spectrometers, donated equipment to the value of more than R10 million for this project. As a result the UFS is one of the few universities in the world that can offer postgraduate training in bioanalytical chemistry.

Prof. Hendrik Swart, head of the Department of Physics at the UFS, and Dr Martin Ntwaeaborwa, senior lecturer at the Department of Physics were finalist in the research- capacity developer and black-researcher categories respectively.
The NSTF awards gives recognition to the outstanding contributions of individuals and groups to science, engineering and technology. This includes all practising scientists, engineers and technologists across the system of innovation, including, for example, teachers and students in mathematics, science and technology. The NSTF represents government, science councils, professional bodies, higher education, business and civil society.

Altogether nine individuals and three organisations were presented with the NSTF Awards trophy by the Minister of Science and Technology, Mr Mosibudi Mangena.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel:  051 401 2584
Cell:  083 645 2454
E-mail:  loaderl.stg@ufs.ac.za
4 June 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept