Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Council on Higher Education LLB qualification review not yet complete
2017-05-16

The reaction from various stakeholders following the ‘Outcomes of the National Review of the LLB Qualification’ by the Council on Higher Education (CHE) on 12 April 2017 requires the CHE to clarify that the national review process has not been completed and is ongoing.

The peer-review process conducted under the auspices of the CHE is based on the LLB Standards Document which was developed in 2014-2015 with input from higher-education institutions and the organised legal profession. Following self-review and site visits by peers, the process is now at the point where commendations and shortcomings have been identified, and the statement of 12 April reflects those findings. All law faculties and schools have been asked to improve their LLB programmes to meet the LLB Standard, and no LLB programme has been de-accredited. All institutions retain the accreditation they had before the Review process began and all institutions are working towards retaining their accreditation and improving their LLB programmes.

The South African Law Deans’ Association (SALDA) has issued a set of responses regarding the LLB programme review. The following questions and answers were published to give more clarity on the questions raised.

1.    What is the effect of a finding of conditional accreditation?
The programme remains accredited.

(“Accreditation refers to a recognition status granted to a programme for a stipulated period of time after an HEQC evaluation indicates that it meets minimum standards of quality.”)

The institution must submit a progress report by 6 October 2017 that indicates how short-term aspects raised in the HEQC reports have been addressed and an improvement plan to indicate how longer-term aspects will be addressed.

2.    What is the effect of a finding of notice of withdrawal of accreditation?
The programme remains accredited.

The institution must submit an improvement plan by 6 October 2017 to indicate how the issues raised in the HEQC report will be addressed, including time frames.

3.    How does the finding of notice of withdrawal affect current students?
Students currently enrolled for the LLB programme at any institution are not affected at all. They will graduate with an accredited qualification.

4.    How does the finding of notice of withdrawal affect new applicants?
The programmes remain accredited and institutions may enrol new students as usual. This also includes students completing BA/BCom (Law) programmes who wish to continue with the LLB programme.

5.    How does the finding of notice of withdrawal affect prior graduates?
Degrees previously conferred are not affected.

6.    What happens when the improvement plans are submitted in October 2017?
The CHE will evaluate the plans when they are submitted, and the programmes remain accredited until a decision is taken whether the improvement plan is sufficient and has been fully given effect to or not. The institutions will have to submit progress reports to the CHE indicating implementation of measures contained in the improvement plan.

Should a decision at some stage be taken that a programme’s accreditation must be withdrawn, a teaching-out plan would be implemented so that all enrolled students would have the opportunity to graduate with an accredited degree.

For more information on the CHE’s pronouncement please contact Moleboheng Moshe-Bereng on MosheBerengMF@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept