Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Qwaqwa Campus honours academic excellence
2017-05-18

Description: QQ autumn Graduation 2017 Tags: QQ autumn Graduation 2017

Photo: Ian van Straaten

Photo Gallery
Video


Qwaqwa Campus kicked off the 2017 graduations season of the University of the Free State in style when over 550 degrees and certificates were conferred in three sessions on 12 and 13 May 2017. These included five PhDs from the Faculty of Natural and Agricultural Sciences.

In his maiden speech delivered during the two ceremonies on Friday 12 May 2017, the newly-appointed Vice-Chancellor and Rector, Prof Francis Petersen, emphasised the interconnectedness of graduates with other stakeholders in their communities.

“Never forget the role played by other people who sacrificed a lot for you to be here today. Recognise the extra mile that someone was willing to go for you to graduate,” he said to an enthusiastic audience that included Grade 12 learners from neighbouring schools. 

Prof Petersen also reminded the graduates that not everybody had an opportunity to enter, enrol, and eventually graduate at a university. “You are part of the privileged few, and I am confident that the UFS has given you an equal opportunity to reach your full potential. You have had years of exposure to ideas and experiences on diversity. You now have the opportunity to show the world and to use what you have learnt beyond a classroom,” he added.

“Go out there and open doors for others as much as they were opened for you. I implore you to carry over your experiences of diversity and use them to build a better world. Go out there and build a better world, not only for yourself but for everyone in need. Expand your influence, reach out, and be accountable,” he said.

“South Africa needs your skills,
innovation, knowledge, expertise,
and creativity.”

Make your own unique contribution
The session held on Saturday 13 May 2017 saw the Principal of Motheo TVET College and Qwaqwa Campus alumnus, Dipiloane Phutsisi, having a heart to heart with the graduates from the Faculty of Education.

“Our contribution to the world as graduates will not be measured by the wealth we accumulate or the accolades we receive, but rather by the way in which we share our unique gifts with the world. And the only place to find those gifts is to look within yourself. As the class of 2017, make your own unique contribution,” she said.

“Your graduation takes place at a particularly challenging time in the history of our democracy. It happens at a time when our nation is engulfed by racial polarisation, anger, confusion about what democracy and freedom mean to us, and at a time when the pillars of morality are tested.”

“As you graduate, I wish to remind you that our country needs you more than ever before. South Africa needs your skills, innovation, knowledge, expertise, and creativity,” she said.

Three members of the current SRC were also among the graduates. They are the President, Njabulo Mwali (BSc Information Technology), Sports Affairs Officer, Ntokozo Thango (BA Sociology), and Student Development and Environmental Affairs Officer, Ntokozo Masiteng (BA Sociology).

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept