Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Department of English changed to empower students
2017-07-05

Description:Department of English  Tags: Department of English

Lecturers from the Department of English at the University of the Free State have been working
hard to create a robust learning environment for students through continuous assessment.
Photo: Sonia Small


A new curriculum, exciting third-year seminars, and a transition to continuous assessment. These are some of the changes made by the Department of English at the University of the Free State (UFS) over the past few years. The department, which also boasts four National Research Foundation (NRF) researchers, did this to tailor the curriculum towards the needs of its students and to foster a better culture of engagement.

According to Prof Helene Strauss, Head of the Department, the advantages of these changes are clear. “Staff have noted a significant improvement in both the basic writing and critical deliberation skills of our students, and in the responsibility they are taking for their own learning.” The new curriculum empowers students to take a position in relation to the knowledge they encounter in the classroom, thereby strengthening their own critical voice.

Taking continuous responsibility

One of the most significant changes for students was the fact that they have to take responsibility all the time. Prof Strauss says continuous assessment changed “last-minute cramming to near-daily, student-centred activities of reading, writing, and critical discovery.”

Because students have to prepare for lectures and reflect on materials, they are in a better position to internalise difficult debates and critical concepts. “Rather than telling students what to think, we help them develop flexible, critical tools to make sense of a changing world.”

Third-year seminars are another way of including forms of instruction that concentrate on the links between education and democracy, but still improve students’ ability to speak and write English accurately. Every semester, students can choose seminars from a range of topics such as ‘Witchcraft’ (Prof Margaret Raftery) and ‘The Art of Dying’ (Dr Mariza Brooks).

Research and associates around the world

Dr Marthinus Conradie, Dr Rodwell Makombe, Prof Irikidzayi Manase, and Prof Strauss are all NRF-rated researchers in the department.

The department also has affiliated research associates from countries including Zimbabwe, the USA, and Canada. Dr Kudzayi Ngara currently holds a competitive NRF grant for a project on Southern African urbanity, and Dr Philip Aghoghovwia recently received the prestigious African Humanities Programme Fellowship.

Under the guidance of Dr Ngara, the department has been able to roll out a new Honours programme on the Qwaqwa Campus. The campus now also offers students the opportunity to pursue MA and PhD studies.

Other highlights:
• Hosted the international Institute of the Association for Cultural Studies in 2015.
• Books published: Dr Susan Brokensha (with Burgert Senekal). Surfers van die Tsunami: Navorsing en Inligtingstegnologie binne die Geesteswetenskappe (SUN MeDIA, 2014); Prof Iri Manase. White Narratives: The depiction of post-2000 land invasions in Zimbabwe (UNISA Press, 2016); as well as co-edited volumes with Cambridge Scholars Publishing (Dr Oliver Nyambi) and Routledge (Prof Helene Strauss).
• Publications include three special journal issues (of ISI journals Critical Arts: South-North Cultural and Media Studies; Safundi: The Journal of South African and American Studies; Interventions: International Journal of Postcolonial Studies).

 



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept