Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS Safety Awareness March set to create a safe space for students
2017-07-27

 Description: Suspicious behavior Tags: safety, campaign, SRC, communication, awareness


The University of the Free State (UFS), in collaboration with various stakeholders, has dedicated the week of 24 to 28 July 2017 to creating awareness for the safety of students on and around its campuses.

UFS and CUT unite for safety
The highlight of the week will be on Thursday 27 July 2017 when a safety awareness march will take place from the Main Building on the Bloemfontein Campus to the Bram Fischer Building, where a memorandum will be handed over to Mr Sam Mashinini, MEC for Police, Roads, and Transport in the Free State. The march is a partnership between the UFS Student Representative Council (SRC) and the Central University of Technology (CUT).

 During a meeting on 24 July 2017, the Executive Committee of Senate granted formal approval for students and staff of the Bloemfontein Campus to take part in the safety march on 27 July 2017. For this reason, all lectures will be suspended from 11:00 to 13:00 on 27 July 2017 in order to give the campus community the opportunity to participate in the march. Academic staff, as well as staff in the administrative support services, are encouraged to join the march.

Programme for the safety march:


11:00: Marchers gather in front of the Main Building

11:15: Marchers depart from the Main Building to the Main Gate

11:30: Marchers exit the Main Gate and move towards the Central University of Technology (CUT). Students and staff who are unable to participate in the rest of the march, return to their work places or classes.

12:20: UFS and CUT marchers will gather at the Bram Fischer Building, situated on the corner of Nelson Mandela Avenue and Markgraaff Street. Here, the Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, and the Vice-Chancellor and Principal of CUT, Prof Henk de Jager, will address the marchers, after which the memorandum will be read by the respective SRC Presidents and handed to Mr Mashinini.

Activities underway to raise safety awareness
During the week, the Student Representative Council (SRC), together with other stakeholders, have been involved in several activities on and off the Bloemfontein Campus, including door-to-door visits to student homes and residences on and around campus, awareness campaigns at all the gates of the campus, and a Safety Dialogue that will be held on Wednesday 26 July 2017 at the Equitas Auditorium. The aim of the Safety Week is to focus on informing, educating, and encouraging students as well as the Mangaung community at large, in order to work together in creating a safe environment for students.

The week started with the roll-out of an awareness campaign titled Reach Out, which is set to bring students and the community of Mangaung together to help decrease the number of violent crimes faced by students off campus. The communication plan includes safety messages, using outdoor billboards, posters on lampposts around the residential student areas, local community radio stations, campus media, and the university’s social media platforms.

A similar student safety awareness campaign will take place on the university’s Qwaqwa Campus during the week of 31 July 2017.



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept