Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS gives recognition to excellent researchers
2004-11-16

p>The University of the Free State will give recognition to excellent researchers at UFS on Tuesday 16 November 2004. “This recognition function will also serve as the first annual lecture in research excellence,” says Prof Frans Swanepoel, Director of Research Development Division at the UFS.

 

This is the first occasion of its kind in the UFS. It coincides with the university’s centenary celebrations. The recognition of excellent research shows the UFS’s commitment and innovative focus on research as one of its core functions,” says Prof. Swanepoel.

Recognition will be given in different categories. They are female researchers, black researchers, young researchers, C- and L-Rated researchers, researchers with significant research outputs, B-Rated researchers and distinguished professors in research.

The promotion of equity and development of research capacity of designated groups is one of the objectives of the UFS’s research strategy therefore the university is recognising the research achievements of 21 women and 16 black persons. Amongst these are Prof. Margaret Raftery (English and Classical Languages), Dr Liesl van As (Zoology and Entomology), Prof. Peter Mbati (head of the Qwaqwa campus) and Prof. Charles Ngwena (Constitutional Law and Philosophy of Law).

The UFS is also recognising nine young researchers. They must hold a doctorate and have the potential to establish themselves as researchers within a five-year period based on their performance and productivity as researchers during their doctoral studies and/or early post-doctoral careers. Amongst them are Dr Esta van Heerden (Microbial Biochemical and Food Biotechnology) and Prof. André Jooste (Agricultural Economics).

Fifty-eight established researchers with a sustained recent record of productivity are receiving recognition in the C- and L-rated researchers’ category. Amongst them were Prof. Hennie van Coller (Afrikaans, Dutch, German and French) and Prof. Gert Erasmus (Animal- and Wildlife- and Grassland Sciences).

Prof. Francois Tolmie (New Testament) and Prof. Gina Joubert (Biostatistics) are two of the twelve researchers that are receiving recognition for having excelled in research outputs during recent years.

Nine researchers are acknowledged in the B-category for the international recognition they receive from their peers for the high quality and impact of their recent research outputs. Amongst them were Prof. Johan Grobbelaar (Plant Sciences) and Prof. Hendrik Swart (Physics). Prof. Grobbelaar focused in his research on limnology, algal biotechnology, plant stress and Prof. Swart focused on solid state physics and degradation mechanisms that are responsible for the degradation of field emission and TV displays.

Seven individuals are recognised for their exceptional achievements as researchers. Prof. Frederick Fourie, Rector, but previously in the Department of Economics, is recognised for his research in two policy areas: Political Economics, Government Finance and Fiscal Policy, and Industrial Economics, in particular analysis of the South African industrial structure and competition policy, where his research contributions played a key role in reforming South Africa’s competition policy.

Prof. Lodewyk Kock (Microbial, Biochemical and Food Biotechnology) focuses in his research mainly on pure and oxidised edible oil where yeasts are used as a study model. He obtained national as well as international recognition for this research program.

The UFS is also awarding the S2A3 Bronze Medal to recognise a Master’s degree student who has delivered outstanding research in one of the sciences. Mr Pieter Taljaard and Ms Tania Venter are recognised in this category.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
16 November 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept