Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS experimental farm to be redesigned as a training facility
2004-10-25

Back fltr:
Dr Léan van der Westhuizen, Manager: UFS Sydenham Experimental Farm; Prof Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS and Councilor Thami Stander, Chairperson: Mangaung Municipal Portfolio for Agriculture and Rural Development

Front fltr:
Mr Hanz Nketu, Chairperson: Free State Legislative Committee on Agriculture and Mr Peter Frewen from the Free State Legislature

The Faculty of Natural and Agricultural Sciences of the University of the Free State will soon sign a tri-partite cooperation agreement with the National African Farmers Union (NAFU) and the Mangaung Local Municipality with the aim of providing training and mentorship to small-scale and emerging farmers, including those recently settled under the on-going land redistribution programme.

The agreement is part of the Faculty’s strategic plan to support the on-going reform process in the country, of which Black Economic Empowerment in Agriculture (Agri-BEE) is an important part. The Free State Provincial Department of Agriculture is also actively supporting this initiative.

Under the plan, the Faculty is redesigning its experimental farm, located about 12 kilometers south of Bloemfontein, as a training facility to build up skills in among others broiler and egg production, dairy farming, animal husbandry, piggery, sheep and goat production. The idea is to introduce a comprehensive package that empowers the small and emerging farmers and the local communities adjoining the farms through simultaneous investments in research, extension, and practical agricultural training.

Learnerships are also being drawn up to provide productive skills in order to contribute to addressing the national skills gap and enhancing opportunities for both self and wage employment.

The residents of the adjoining informal settlement known as Mangaung Phase II where unemployment is currently at extremely high levels are primary targets of this component of the project. The Faculty intends for this project to service the farming communities of the Free State Province and gradually spread to other Provinces in the country.

Having recognised this training programme as a potential instrument for achieving “a united and prosperous agricultural sector”, the Free State Legislature has shown considerable interest in the programme.

Following a preparatory visit to the farms by the Agriculture Committee of the Free State Legislature a request was made to the Faculty to host a larger visit by the Legislative Committees of the Free State, North West and Eastern Cape Provincial Legislatures on Monday 25 October 2004 and present details of the training programme.

The President of NAFU in the Free State Province, Mr Nox Nonkonyana, the Dean of the Faculty of Natural and Agricultural Sciences, Prof Herman van Schalkwyk, the Chair of the Mangaung Municipal Portfolio for Agriculture and Rural Development, Councilor Thami Stander, and the Chairperson of the Free State Legislative Committee on Agriculture, Mr M Nketu, will address the Legislators during the occasion.

Prof Herman van Schalkwyk

Dean: Faculty of Natural and Agricultural Sciences

University of the Free State, Bloemfontein

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
25 Oktober 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept