Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS awards centenary bonuses to staff
2004-11-25

The University of the Free State (UFS) will award a special Centenary bonus of R3000 (three thousand rand) to all qualifying staff in December 2004 .

As far as general salary increases for 2005 are concerned, plus an inflation- based linked salary increase adjustment of 1,4 percent and a further 4,6 percent salary increase as a final dividend from the financial turn-around strategy that began in 2000, will be instituted .

  • The final percentage salary increase is dependent on whether the expected government subsidy, of which the UFS must still receive notification from the Department of Education, is received.
  • , if the expected government subsidy realizes .
  • In addition, the salaries of service workers in low remuneration groups, as well as full professors have been adjusted retroactively to 1 January 2004. This restructuring was agreed upon to address market-related backlogs for these two groups , who display the biggest backlog relative to comparable institutions . A similar professional bench-marking exercise for support service staff has not been finalised.

This agreement was signed on Wednesday 24 November 2004 between the UFS Council and the UVPERSU-NEHAWU Joint Forum regarding salary negotiations for 2005.

“With this Centenary bonus and the significant above-inflation salary increase payment the UFS wants to pay recogni se tion to the sterling role that staff

have played in a difficult period of transition and fast growth and the contributions that they made to promote excellence at the UFS to a

university of excellence,” said Prof Frederick Fourie, Rector and Vice-

Chancellor of the UFS.

He said that the extra payment of this final 4,6 percent increase due to benefit from the financial turn-around strategy means that in real terms average salaries at the UFS had increased over the past 3 to 4 years by well over more that the 15 percent target that was set initially.

According to Prof Fourie all staff members who were in the employ of the UFS on UFS conditions of service on 15 November 2004 and who assumed duties before 1 October 2004, will qualify for the bonus. The same criteria will apply as for the 2004 bonuses.

However, there are some exceptions who do not qualify for the bonus eg learning facilitators, professors extraordinary, affiliated lecturers, departmental assistants, laboratory assistants, student help, all staff appointed for less than 20 hours per week, persons who are paid on a claims basis etc.

“Although the UFS’s actual subsidy amount is not yet known, an increase of 6,6 % in the total remuneration costs was budgeted for in the budget serving before the Executive Management and Council. It was further agreed with the UVPERSU-NEHAWU Joint Forum that the first 6 % increase will be used as general pensionable salary adjustment with implementation date 1 January 2005,” said Prof Fourie.

According to Prof Fourie the agreement also applies to all staff members of the Qwaqwa and Vista campuses whose conditions of service are already aligned with those of the main campus.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
25 November 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept