Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Council concerned over health crisis
2009-06-08

The Council of the University of the Free State (UFS) has come out in support of doctors and health professionals attached to its Faculty of Health Sciences who expressed their concerns about the health crisis in the Free State.

At its meeting on Friday, 5 June 2009 the Council said it shared the concerns of health professionals that the quality of patient care and the quality of training being provided at the health faculties across the country are being compromised.

Earlier last week doctors and other health professionals of the UFS Faculty of Health Sciences issued a statement highlighting the seriousness of the crisis in health care provision in the Free State Province, warning that the system was on the verge of collapse.

According to the Council of the UFS, a petition will be addressed to the Minister of Health and the Minister of Education calling for urgent steps to be taken to correct the deteriorating situation in the province’s health care system.

In other decisions, the UFS Council also decided to confer an honorary doctorate on Judge Louis Harms, the Deputy President of the Supreme Court of Appeal in Bloemfontein.

Judge Harms is an international specialist in the field of Intellectual Property Law and has been actively involved in legislation and international agreements on intellectual property law, including the Designs Act, Trademarks Act and Patents and Copyrights Acts.

The motivation quotes one of his fellow jurists as saying that: “Harms is one of the greatest South African lawyers of the last 50 years. He is an intellectual giant who has made an impressive and profound contribution to the development of South African law: He is erudite, visionary, astute and principled.”

An honorary doctorate will also be conferred on geologist and expert on the geology of the Karoo Supergroup, Mr Johan Loock, for his distinguished efforts towards promoting the earth sciences and specifically geology, particularly in the context of the Free State.

Mr Loock has had two Karoo fossils named after him, which is a particular honour in the scientific world of palaeontology. He was employed by the UFS for 32 years and has close ties with the Free State in terms of his wide field of research interests.

The motivation further states that “the man affectionately and respectfully known as Oom Loock, or Malome, has selflessly given of his vast knowledge, expertise and insights into the physical and cultural heritage of the Free State to all who would learn from, and with, him”.

A Council Medal will be awarded to Prof. Johan Grobbelaar from the Department of Plant Sciences at the UFS. During his time at the UFS he has been a pioneer in many areas, including the first research expedition to Marion Island, the first PhD about research on Marion Island, the establishment of the Institute of Environmental Sciences as well as the establishment of the Centre for Environmental Management.

Council also decided to refer a report from the iGubu consultants regarding aspects of diversity in student residences to the Executive Committee of the Council so that the benefit of the participation of the rector-designate Prof Jonathan Jansen could be obtained and for further participation and consultation with relevant stakeholders.

In another decision the Council also extended the term of appointment of Prof. Tienie Crous as Dean: Economic and Management Sciences for an additional term of five years.

The Council furthermore appointed Prof. Hugh Patterton as the director of the strategic academic cluster dealing with advanced biomolecular research and Prof. Wijnand Swart as Director of the strategic academic cluster dealing with technologies for sustainable crop industries in semi-arid regions.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept