Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS School of Nursing opens new frontiers at 40
2009-11-16

The opening of the virtual facility of the School of Nursing at the University of the Free State (UFS) and a gala dinner to celebrate the School’s 40th year of existence took place on the Main Campus in Bloemfontein this week. At the opening were, among others, from the left: Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS; Dr Oluseyi Oyedele and Ms Viona Munjeri, both from The Atlantic Philanthropies; and Prof. Anita van der Merwe, Head of the School of Nursing at the UFS.
Photo: Leatitia Pienaar

All eyes in the nursing profession in South Africa were turned to the University of the Free State (UFS) when the School of Nursing opened a state-of-the-art virtual health training and learning facility and celebrated its 40th year of existence with a gala dinner on the Main Campus in Bloemfontein this week.

The lustrous events were attended by dignitaries from all spheres of the health-care fraternity in South Africa.

The new virtual facility, The Space, is made possible by a grant of R16 million from The Atlantic Philanthropies and R1 million from the UFS. The Atlantic Philanthropies organisation is an international philanthropic organisation that is going to inject R70 million into nursing in South African over the next four years. The initiative will enhance nursing education and step up the quality of health-care delivery in South Africa. Four major grants were made to universities in South Africa, of which the UFS is one.

With the facility at the UFS School of Nursing, nursing education is propelled into the future. Prof. Anita van der Merwe, Head of the School of Nursing, says, “The virtual learning facility is a very new way of thinking and teaching. At the moment, theory and practice are separated, as theory is often taught in the mornings, followed by practical settings later in the day. Learner nurses then also go to clinical facilities for their practicals where the quality of care is declining and human resources are a problem.

“We believe that with new technologies such as e-learning and high-tech computer-mediated equipment we can use the ‘virtual world’ to bridge the theory-practice gap in the same location.”

Prof. Van der Merwe says the project is essentially about transformation: taking a stand against stagnation in nursing education and practice and daring to be different.

In the new virtual facility nurses will have the best of three worlds – the expertise of the facilitator/educator, simulation technology, and a vast selection of on-line and off-line software, exposing them to blogs, broadcasting and enhancing computer literacy. This will attract both the new “millennial” generation, which tends to be technologically competent, as well as the older learner because of the unthreatening learning environment.

The core space will accommodate 40 to 60 students and is designed to encourage informal, collaborative learning and practice simultaneously. It will have a demarcated area for “patients” (such as advanced adult and baby patient simulators) and a “clinic space” allowing for role play.

At the gala dinner, Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS commended nurses in South Africa for their caring role, but also expressed his concern that South African has lost its deep sense of care. South Africa is at a critical point and the country can be changed if a deep sense of care can be embedded again.

About forty nursing educators from all over South Africa attended an exploratory workshop in the facility today and the last meeting of the Forum of University Deans in South Africa (FUNDISA) also coincided with the festivities at the School of Nursing.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 November 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept