Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS Rector spreads the Kovsie spirit
2010-02-12

Prof. Jonathan Jansen (middle) and UFS students Willien du Preez (far left) and Mbulelo Mpofana (far right) together with learners they met while on their tour of Eastern Cape schools.
Photo: Supplied


Prof. Jonathan Jansen, Rector and Vice-Chancellor of the University of the Free State (UFS), recently joined the Faculty of Economic and Management Sciences on a tour of schools in the Eastern Cape Province. Prof. Jansen sees the tour as a staggering success: “It was hard work, but a lot of fun. I can’t wait to visit other provinces and spread the true Kovsie spirit throughout South Africa.”

The tour kicked off at Aliwal North, where 36 students, parents and teachers from schools in Aliwal North were addressed.

In Queenstown they were awaited by more than a hundred people. Hoërskool Hangklip, Queen’s College Boys High, Girls High and Maria Louw Secondary School attended the function.

The evening function was hosted by Hudson Park High School. Representatives from many schools, including George Randell High School, Stirling High School and Claredon Girls High School made up the 174 people in attendance. The next morning motivational speeches were delivered at Grens Hoërskool and Stirling High School. George Randall High School also requested a visit from Prof. Jansen during the previous evening’s function.

The final function was held at Grey High School in Port Elizabeth. Hundred-and-thirty-four people from the top schools in Port Elizabeth attended the function. These included Victoria Park High School, Theodor Herzl School, Hoërskool Andrew Rabie, Alexander Road High School, Ethembeni Enrichment Centre and Nico Malan in Humansdorp.

Sadly, the tour had to end, but at least it ended on a high note. Ethembeni Enrichment Centre and Chapman’s High School were the last schools on the itinerary, but certainly not the least. The schools might not have all the resources at their disposal, but their enthusiasm and unquenchable spirit and pride were incredible.

Willien du Preez and Mbulelo Nkululeko, two students who accompanied the tour, were awed at the experience: “It was not only a privilege, but also proof that the university strives to give students wonderful learning opportunities. It also confirms our Rector’s stand: the university is not just offering students a degree, but also the opportunity to grow as humans. And that is what adds real value to our lives.”

According to Prof. Tienie Crous, Dean: Economic and Management Sciences, the tour achieved its goals, and much more: “We redeemed our university in other provinces while marketing it at the same time.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept