Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Verslag: SA studente atletiek (Afrikaans)
2005-04-28

Absa-kovsieatletiek
SA studente atletiekkampioenskap - 22 en 23 April 2005 Johannesburg Universiteit

 

Weereens baie goed!!! Dit is hoe ons die Kovsieatlete se vertonings op en af van die baan af kan beskryf. Die 22 medaljes vanjaar teenoor die 25 van 2004, die 14 van 2003 en die 10 van 2002 spreek boekdele, veral as ons in ag neem dat ons in die laaste week 4 van ons top atlete weens beserings verloor het (Antonie Rossouw, Nico Oosthuizen, Jaco Claasen en Renè Kalmer).

Ons het op 20 April om 09:00 vanaf Pelliespark per bus na Johannesburg vertrek en tuisgegaan in die Randburg Road Lodge hotel.

'n Totaal van 43 atlete – 18 vroue en 25 mans het die Kovsies verteenwoordig (spanlys aangeheg).

Die bestuurspan het bestaan uit Danie Cronjé bestuurder mans, Sarina Cronjé bestuurder vroue, Bertus Pretorius afrigter mans, Ans Botha afrigter vroue, Hendrik Cronjé (Video), Jan du Toit, Sidney van Biljon, DB Prinsloo sportbestuurder.

Die mediese span het bestaan uit Dr. Org Strauss en Daleen Lamprecht(bio).

Die volgende lede van die ABSA KOVSIESPAN het medaljes verwerf.

GOUD    
     
Jan vd Merwe  400   46,37
     
Johan Cronjé    1500 mans   3:50.20
     
Boy Soke  10000   30:23,40
     
Charlene Henning   Driesprong vroue  12.62m
     
Francois Potgieter      Tienkamp  6862 punte
     
Magdel Venter    Diskusgooi vroue     46.94m
     
Kovsiespan mans   4x400 Aflos  3:10,17
     
(Dirk Roets, Francois Lötter, Johan Cronjé, Jan van der Merwe)
     
     
SILWER    
     
Charlene Henning  Verspring vroue    6,16m
     
Magdel Venter  Gewigstoot vroue  13,21m
     
Sanè du Preez   Hamergooi vroue     44,71m
     
Boy Soke     5000m    14:36,60
     
Francois Potgieter  110 Hekkies mans    14,00sek
     
Christine Kalmer  1500m vroue    4:35,40
     
Cobus Marais    3000m hindernis   9:32,80
     
     
BRONS    
     
Gustav Kukkuk     110 Hekkies mans    14.00sek
     
Mariana Banting    Driesprong vroue  12.36m
     
Helen-Joan Lombaard   Sewekamp vroue    3354 punte
     
Clive Wessels   Paalspring   4,05m
     
Johan Cronjé  800m  1:52,01
     
Kovsiespan vroue   4x100 Aflos    47,56
     
(Denise Polson, Elmie Hugo, Carlene Henning, Minette Albertse)
     
Kovsiespan mans    4x100 Aflos   42,21
     
( Tiaan Pretorius, Gustav Kukkuk, Marno Meyer, Wiaan Kriel)
     
     
Kovsies wat ook onder die eerste 8 geëindig het sien as volg daaruit:
     
     
4de Plek    
     
Mariana Banting   Hoogspring vroue  1.70m
     
Stefan van Heerden   Driesprong  15,12m
     
Elmie Hugo   200m   24,12sek
     
Ronè Reynecke     400m  57,31sek
     
     
5de Plek    
     
Jackie Kriel    100 Hekkies    13,90sek
     
Jackie Kriel     400 Hekkies   65,40sek
     
Riana Rossouw    Gewigstoot    10,59m   
     
Kenny Jooste   Verspring   7,23m
     
Elmie Hugo    100m  11,86sek
     
Helen-Joan Lombard  Paalspring    3,25m
     
Ronè Reynecke     800m   2:17,58
     
Christine Kalmer   5000m      17:38,32
     
     
6de Plek    
     
Tiaan Pretorius  Verspring   7,21m
     
Francois Pretorius    800m     1:52,67
     
Riana Rossouw   Spiesgooi      38,12m
     
Kovsiespan vroue   4x400 Aflos  4:06,56
     
(Ronè Reynecke, Denise Polson, Lise du Toit, Elmie Hugo)
     
     
7de Plek    
     
Gerda Rust    Hamergooi   36,37m
     
Schalk Roestoff     1500m      3:55,80
     
Francois Lotter    400m       47,94
     
Pienaar j v Rensburg    10000m   32:12,21
     
Kovsie mans  ”A”  en  B span  4x400     3:15,44
     
     
8ste Plek    
     
Charles le Roux   Verspring   7,06m
     
Tiaan Pretorius  Driesprong  14,06m

In die spankompetisie het die Vroue 4de geëindig en die mans 4de. In die algehele kompetisie het die Kovsies ook die 4de plek behaal (aangeheg).

Die gees en gedrag van die toergroep was uitstekend en was die atlete goeie ambassadeurs vir die Kovsies.

Danie Cronjé     Sarina Cronjé
Spanbestuurder  Mans   Spanbestuurder Vroue

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept