Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Unique partnership flows out of our Schools Projects
2011-06-29

 

 At the meeting between our university and principals and teachers of three of the 23 schools in our university’s Schools Partnership Project were, from the left: Mr Motlolometsi Tshidiso,  Tsotseletso Secondary School; Dr Choice Makhetha, Vice-Rector: External Relations (acting); Mr Vuyo Mlinde, Bloem-Oos Intermediary School; back: Dr Peet Venter, Head of our South Campus, and Mr Tlhabedi Mafoyane from Kagisho Secondary School.

Our university established a unique partnership flowing from two of its community initiatives; the UFS Schools Partnership Project and the Extreme Make-over for Schools Project. Bloem-Oos Intermediary School which will benefit from the Extreme Make-over for Schools Project formed a partnership with Kagisho and Tsotseletso Secondary schools becoming a feeder school for the two schools. Both Kagisho and Tsotseletso Secondary schools are now beneficiaries of the UFS Schools Partnership Project.

With the Schools Partnership Project, the university is working closely with the 23 schools for a three- to five-year-period to help schools to become top achievers of which the teachers, learners and parents could be proud. The schools were identified last year and the groundwork for this project was finalised in 2010 as well. The university’s involvement in the Extreme Make-over for Schools Project includes amongst others a partnership with the Department of Basic Education and the Bloemfontein business community to work together to launch the first of a number of a newly upgraded schools to learners, teachers and the community. Bloem-Oos Intermediary School became the first school in Bloemfontein to undergo an extreme makeover.
 
Management structures from the University, including Prof. Jonathan Jansen, Vice-Chancellor and Rector, Dr Choice Makhetha, Vice-Rector: External Relations (acting), and Dr Peet Venter, Campus Head of the our South Campus, recently met with the principals and some of the teachers of three schools that form part of these two community initiatives of the university. The meeting between the university and principles Mr Tlhabedi Mafoyane (from Kagisho Secondary School), Mr Motlolometsi Tshidiso (Tsotseletso Secondary School) and Mr Vuyo Mlinde (Bloem-Oos Intermediary School) took place to enhance the relationships between the parties involved.
 
Dr Makhetha said, “When you support a school you groom learners to fit into the culture of the university. We were excited to learn that Bloem-Oos Intermediary School is a feeder school for Kagisho and Tsotseletso Secondary Schools. This partnership allows us to not only prepare learners already from an early age for university but also throughout their high school career. Let us make this project a model for South Africa.”
 
Continuous efforts and projects from the university as well as partners in the community, to invest in the learners of Bloem-Oos Intermediary School, include:
-       The Project for Peace: A calculator project where learners will be taught on how to use a scientific calculator properly. A group of the learners will also be supplied with a free calculator.
-       The Music Project: The Odeion School of Music at the UFS will also bring a music programme to the school.
-       The Desk Project: This project includes fixing of all broken desks by Group 4 Correctional Facility. (This initiative includes all the broken desks of all the 23 schools in involve in the UFS Schools Partnership Project.)
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept