Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Lecture on interpretations and translations of San place names
2011-09-23

Prof. Peter Raper, recently appointed as Honorary Professor: Linguistics, in the Department of Language Management and Language Practice at the University of the Free State, will deliver his inaugural lecture on Tuesday evening, 27 September 2011. His topic for the evening is “Interpretations and translations of Bushman (San) place names”. With this inaugural lecture, he also introduces an interesting one-day international colloquium on the theme: “Name-change planning – striving towards authenticity”.A panel discussion about street-name changes in Bloemfontein forms part of this colloquium and promises to elicit a stimulating debate.

Prof. Raper is probably better known for three popular place-name dictionaries, Streekname in Suid-Afrika en Suidwes, published in 1972; the Dictionary of Southern African Place Names, published in 1987, updated in 1989 and published in 2004 with some additions as New dictionary of South African place names; and Hottentot (Khoekhoen) place names, a dictionary compiled in collaboration with the famous Prof. G S  Nienaber (a former Kovsie). In fact, Prof. Raper’s work is a continuation of their world-renowned series, Toponymica Hottentotica, which was published between 1977 and 1981. It is generally regarded as the most authoritative work on Hottentot place names. His current interest in Bushman place names builds on this pioneering work and is actually also a re-evaluation of the underestimated role of the Bushman with regard to place naming in South Africa up to now. His work offers a new perspective on what could be regarded as the “first” or earliest names of places in South Africa and brings a sobering perspective to the current debates regarding place-name changes where various claims are made about “who has given the name first”.

However, Prof. Raper is also known for his role in the standardisation of place names, both nationally and internationally. In South Africa, he has served on the South African National Place Names Committee (1972-1999), the South African Geographical Names Council (1999-2002) and, since 1981, on the Names Society of Southern Africa. Currently, he is an honorary member of this association. Since 1984, he has also been serving on the United Nations Group Experts on Geographical Names and has even been the Chairperson of this Leading international standardisation body (1991-2002).

Apart from this, Prof. Raper regularly publishes his research on geographical names in a variety of academic journals and still participates in the most important national and international conferences on names on a regular basis. Prof. Raper is honoured as South Africa’s foremost names expert.

His inaugural lecture will introduce a colloquium on names planning, presented by his host department. Experts from Lesotho, Zimbabwe and the USA are participating in the proceedings, amongst others, the current Chairperson of the Names Society of Southern Africa, Prof. Adrian Koopman (University of KwaZulu-Natal).

RSVP: Joy Maasdorp on +27(0)51 401 2405 or maasdorpjh@ufs.ac.za before or on Thursday, 22 September 2011.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept