Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS Odeion School of Music (OSM) launched
2011-09-15

The University of the Free State’s (UFS) Odeion School of Music will be launched at the first Dean’s Concert in the Odeion on the Bloemfontein Campus on Friday, 16 September 2011.

The former Department of Music, in the Faculty of Humanities, has been transformed and will henceforth be known as the Odeion School of Music (OSM). This follows in the path of the corporate transition currently taking place at the university, which aims to reflect the progressive and dynamic striving towards excellence, as endorsed by the UFS Vice-Chancellor and Rector, Prof. Jonathan Jansen, and his management group.
 
Two years ago the faculty formulated a new mission with the aim to become an international faculty of excellence. An important component of it has been to create a pro-active marketing strategy and policy towards internationalisation and curriculum development.
 
The name Odeion School of Music portrays not only an excellent asset in the Free State, but also nationally and internationally. The school’s new name bears the respected Odeion brand and a number of successful and respected ensembles operate under this brand. These include the acclaimed residential Odeion String Quartet, as well as the Music Department’s student ensembles, the Junior Odeion String Quartet, the Odeion Sinfonia, and the Odeion Choir.
 
According to Prof. Nicol Viljoen, the Chairperson of the OSM, the name change was motivated by the following objectives:
  • The idea of a school within the Faculty of Humanities not only reflects an academic profile that does justice to the intention of the Department to reposition itself, but also simulates the current identity of the unit. This encompasses diverse thematic entities not only from an academic perspective, but also from a community and cultural perspective. The unit does this through providing services, which include arts entertainment, the provision of facilities, as well as a strong emphasis on community development.
  • With regard to an international perspective, it provides attractive possibilities not only from the perspective of a marketing and publicity profile, but also with regard to the identity of the unit.  
  • Hypothetically the new name allows more flexibility to complement the profile with reference to newly anticipated developments. These include the application of prestigious international experts as artistic fellows, membership to progressive European, jointly developed degree programmes and curriculum development initiatives, the founding of a chair in Orchestra Conducting, a master’s degree in Arts Management, as well as the incorporation of bio-kinetics in the teaching methodologies of performance practice, to name but a few.
  • From a management perspective it could also consolidate the perspective of scarce skill specialisation.
  • To give momentum to the establishment of the OSM, Mr Marius Coetzee was appointed as Innovation Manager. He is a former Project Manager of the European Degree in International Music Management – a joint degree initiative between three Universities from Norway, the Netherlands and Finland, funded by the EU in Brussels. His aim will be to develop and investigate aspects such as internationalisation, marketing, pro-active recruitment strategies, curriculum development and innovative teaching methodologies.
Mr Coetzee said music conservatories, from both European and American perspectives are managed and maintained as highly successful and substantial brands. From the European perspective some examples include the Sibelius Academy in Helsinki (Finland), the Liszt Academy in Budapest (Hungary), the Grieg Academy in Bergen (Norway) and the former Sweelinck Academy in Amsterdam (Netherlands). Similar to the South African milieu, the majority of music conservatories in the USA and Canada are resident within an academic university.
However, unlike the South African reality, the majority of these institutions have a value-added identity portrayed by a specific name. Such an example is the renowned Peabody Conservatory of the University of Baltimore or the Jacobs School of Music at the Indiana University Bloomington, to name but a few.
 
The Dean’s Concert will highlight performances of students in the school. The concert will probably become a regular event in future Spring Music Festivals.


Media Release
15 September 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept