Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Qwaqwa Campus launches No Student Hungry Programme
2013-05-02

 

Samkelo Duma (white shirt) flanked by some of the guests during the launch of the NSH Programme on the Qwaqwa Campus.
Photo: Thabo Kessah
02 May 2013

The Qwaqwa Campus of the University of the Free State launched the No Student Hungry (NSH) Programme on Friday 26 April 2013. The programme aims to provide needy students with a daily balanced meal to enable them to concentrate in class and ultimately obtain their degrees. The programme – initiated by Vice-Chancellor and Rector Prof Jonathan Jansen in 2011 on the Bloemfontein Campus – already feeds hundreds of students.

Rudi Buys, Dean of Student Affairs who represented the Rectorate, encouraged students in need to focus more on their desire for greatness.

“Through this programme, you will be able you to shift your focus from the hunger pangs and rather focus all your energy on the hunger to make Africa great,” said Buys. “We want you to be different from the rest of your generation that is reluctant to compete for greatness. Many of your peers prefer mediocrity and it is our wish that through this programme, you can start learning to compete with the best,” Buys impelled.

According to the Qwaqwa Campus programme co-coordinator, Selloane Phoofolo, NSH operates on a primary and a secondary level.

“The primary level offers a food bursary to the students whose academic performance is above 65 percent and not receiving any form of financial assistance. For the 2013 academic year, we had 53 students applying and 31 have qualified. They are getting a meal for R25.00 a day at the Dining Hall,” said Phoofolo.

She further explained that, “On the secondary level, we provide monthly food parcels to 19 students who did not qualify for the food bursary. These food parcels are donated by Pick n Pay and Stop Hunger Now SA. For this, beneficiaries must undertake 40 hours of community service during the year. They must also partake in student activities. Their academic progress is monitored by the Office of Social Work.”

One of the beneficiaries, a final-year BA degree student Samkelo Duma, expressed his gratitude towards the UFS for giving him an equal opportunity to those in more fortunate situations to do his best in his studies. “It is difficult to study and concentrate on an empty stomach and I must say that the NSH is very helpful. I do not just get a meal, but I get a healthy meal to keep me going throughout the tough day,” Duma said.

Also present at the launch were the patrons of the programme, Ms Grace Jansen and Dr Carin Buys. They volunteer their time and energy to raise funds for the project.

Students apply for the allowances and are selected on the basis of financial need, academic results, active participation in student life programmes and commitment to give something back to the community.

You can also invest in these students' future by contributing R10.00 each time you sms the word 'Answer' to 38722.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept