Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS seals cooperation with National Institute for Higher Education
2006-03-20

At the signing of the agreement were seated from the left Prof Magda Fourie (Vice-Rector:  Academic Planning at the UFS) and Dr Pearl Nkosi (Head: Academic Planning at the NIHE). Standing from the left were Dr Kopano Taole (acting head of the NIHE) and Mr Vernon Collett (Registrar: Academic Student Services at the UFS).
Photo: Stephen Collett

UFS seals cooperation with National Institute for Higher Education

A formal memorandum of understanding was recently signed between the  University of the Free State (UFS) and the National Institute for Higher Education in the Northern Cape (NIHE).

The memorandum was signed to give both institutions a clear understanding of the way in which collaborative programmes should be implemented.

“Although the UFS has been presenting two bachelors degree courses (i.e. B Soc Sc in Human and Societal Dynamics and B Com in General Management) and the Career Preparation Programme at the NIHE since 2003, the cooperative agreement was never formalised,” explained Prof Magda Fourie, Vice-Rector:  Academic Planning at the UFS, during the signing ceremony.

These academic programmes, presented by facilitators living in Kimberley and lecturers from the UFS, serve 270 students and the entry requirements of the programmes are determined by the UFS.

Prof Fourie said the UFS had a history of a relationship with the NIHE.  The partnership should be seen as an example of how two institutions of higher learning can work together to serve the needs of the students in the region.

“The memorandum of understanding is part of the UFS’s commitment to and engagement with the central region.  As the NIHE is currently operating in a policy vacuum, the memorandum is underpinned by certain principles aimed at providing some parameters within which the relationship is established and developed,” she said.

Dr Kopano Taole, acting head of the NIHE, added to this by saying that the understanding of where the NIHE wants to take the partnership is now reflected in the memorandum of understanding. 

“The memorandum is the culmination of many years of hard work and of helping the people of the region.  The continued input and guidance of the UFS is of tremendous help to us and through this we gained a greater sense of what the NIHE can grow to be,” he said.

The NIHE is a joint initiative of the BHP Billiton Development Trust (BBDT) and the Northern Cape Provincial Government and was established in June 2004.  The National Plan for Higher Eduation (NPHE 2001) proposed the establishment of the NIHE in the Northern Cape to serve as the administrative and governance hub for ensuring the coherent provision of higher education through programme collaboration between the higher education institutions operating in the Northern Cape.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
20 March 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept