Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS appoints new council members
2004-06-07

 

The council of the University of the Free State (UFS) last week appointed two new council members. One of the members, Mrs Busiswa Tshabalala, will represent the Qwaqwa community. It is the first time since the incorporation of the Qwaqwa into the UFS campus last year that a council member was elected to represent the Qwaqwa community.

Mrs Tshabalala obtained her BA Hons in History from the University of the North’s Qwaqwa campus in 1992 and a B Ed degree in leadership management from the UFS in 1998. She was the first female deputy principal at the Harrismith Secondary School (1989-1992) and principal of the Forty Second Hill Teachers’ Centre in the Vrede area office of the Free State Department of Education. In 2001 she was seconded by the Free State Department of Education to coordinate programme 1 and 2 for Link Community Development. She is currently the director of the Thabo Mofutsanyana education district of the Free State Department of Education.

Dr Susan Vosloo, international acclaimed cardiologist, is the other new member of the council. Dr Vosloo, old Kovsie of the year 1989, obtained the MB Chb degree in 1980 at the UFS, an M Med cardiothoracic surgery and in 1998 the FCS (SA) qualification in cardiothoracic surgery at the College of Medicine of South Africa (CMSA). Dr Vosloo’s career extends over a wide spectrum and she specialises in pediatric and adult cardiothoracic surgery. In 1993 she took part in the first heart transplant in Johannesburg at Milpark Hospital, in 1997 she did the first hear-lung transplant at City Park Hospital in Cape Town and in 1997 a heart transplant on a 3-year old child.

She has a cardiothoracic surgery at the Christiaan Barnard Memorial Hospital in Cape Town since 1991 and in also part-time involved with the Red Cross Memorial Hospital in Cape Town.

“It is a great honour for the UFS to welcome two women with so much expertise and experience on the council. Their presence strengthens the UFS’s continued effort to transform the council,” said judge Faan Hancke, chairperson of the UFS council..

Both Mrs Tshabalala and Dr Vosloo’s appointments are until June 2008.

The following council members have been re-elected until June 2008:

Prof Dines Gihwala - vice-chairperson of the council
Dr Nathan Bagarette
Dr Frans Kotzé

Dr Kobus Laubscher was elected by the donors as representative for a further term until June 2008. Me Winifred Hoexter was elected by the Alumni as the third representative. She has been a foundation donor of the UFS since 1997 and committee member of the Kovsie Alumni Trust since 2000. Me Hoexter’s term is until June 2008. The other Alumni representatives are judge Faan Hancke and Mr Jan Grobler, whose term is until June 2006.


Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za

7 June 2004

 

 

Mrs Busiswa Tshabalala

Dr Susan Vosloo

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept