Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS keeps the power on
2015-06-24

 

At a recent Emergency Power Indaba held on the Bloemfontein Campus, support structures at the university met to discuss the Business Continuity Intervention Plan to manage load shedding on the three campuses of the UFS.

Currently, 35 generators serving 55 of the buildings have already been installed as a back-up power supply on the three campuses of the university. According to Anton Calitz, Electrical Engineer at the UFS, the running cost to produce a kWh of electricity with a diesel generator amounts to approximately three times the cost at which the UFS buys electricity from Centlec.

Planned additional generators will attract in excess of R4 million in operating costs per year. For 2015, the UFS senior leadership approved R11 million, spread over the three campuses. Remaining requirements will be spread out over the next three years. University Estates is also looking at renewable energy sources.

On the Bloemfontein Campus, 26 generators serving forty-one buildings are in operation. On South Campus, two generators were installed at the new Education Building and at the ICT Server Room. Lecture halls, the Arena, the Administration Building, and the library will be added later in 2015. Eight generators serving 12 buildings are in operation on the Qwaqwa Campus. In 2015, the Humanities Building, Lecture Halls and the heat pump room will also be equipped with generators.

Most buildings will be supplied only with partial emergency power. In rare cases, entire buildings will be supplied because the cost of connecting is lower than re-wiring for partial demand. According to Nico Janse van Rensburg, Senior Director at University Estates, emergency power will be limited to lighting and power points only. No allowances will be made for air-conditioning.

“Most area lighting will also be connected to emergency power,” he said.

Where spare capacity is available on existing emergency power generators, requests received for additional connections will be added, where possible, within the guidelines. The following spaces will receive preference:
- Lecture halls with the lights, data projectors, and computers running
- Laboratories for practical academic work and sensitive research projects
- Academic research equipment that is sensitive to interruptions
- Buildings hosting regular events

According to Janse van Rensburg, all further needs will be investigated. Staff can forward all emergency power supply needs to Anton Calitz at calitzja@ufs.ac.za

Staff and students can also manage load shedding in the following ways:

1. Carry a small torch with you at all times, in case you are on a stairwell or other dark area when the lights go out. You can also use the flashlight app on your phone. Download it before any load shedding occurs. This can come in handy if the lights go out suddenly, and you cannot find a flashlight. Load-shedding after dark imposes even more pressure on our Campus Security staff. We can assist them with our vigilance and preparedness by carrying portable lights with us at all times and by assisting colleagues.
2. Candles pose a serious safety risk. Rather use battery- or solar-powered lights during load shedding.
3. Ensure that your vehicle always has fuel in the tank, because petrol stations cannot pump fuel during power outages.
4. Ensure that you have enough cash, because ATMs cannot operate without electricity.
5. The UFS Sasol Library has study venues available which students can use during load shedding.
6. When arranging events which are highly dependent on power supply, especially at night, organisers should consult the load-shedding schedule before determining dates and preferably also make back-up arrangements. If generators are a necessity, the financial impact should be taken into consideration.

The senior leadership also approved a list of buildings to be equipped with emergency power supplies.

More about load shedding at the UFS:
Getting out of the dark
More information, guidelines and contact information

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept