Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS celebrates Kagiso Trust’s 30 years of commitment to the empowerment of impoverished communities
2015-07-15

From the left are: MEC Tate Makgoe, Free State Department of Education; Busi Tshabalala, Thabo Mofutsanyana Education District Director; Dean Zwo Nevhutalu,  Kagiso Trust Trustee  and UFS Director of Community Engagement, Bishop, Billy Ramahlele.
Photo: ?Thabo Kessah

Future sustainable partnerships in education will survive only if all partners are committed, honest, and transparent.

This is the view expressed by the Free State MEC for Education and UFS Council member, Tate Makgoe, during the panel discussion at the Qwaqwa Campus of the University of the Free State celebrating Kagiso Trust’s 30 years of commitment to the empowerment of impoverished communities. The topic was “The future partnership models for education in Africa”.

“Over the years, the partnership between the Free State Department of Education, the UFS, and Kagiso Trust has helped to expose the potential in our mainly rural children in the Qwaqwa area of the Thabo Mofutsanyana district,” said Makgoe.

”When we started in 2009, the matric pass rate in the district was 64%, and this rose to 87% in 2014. In Qwaqwa alone, we have managed to build 51 computer and 26 physical sciences laboratories. It was these laboratories that enabled the Free State to be the best performing province in the Physical Sciences in 2013,” added Makgoe.

“None of these achievements would have been possible if all the partners had not been committed to the course. Partnerships built on honesty and transparency are the best model, which we hope to export to other provinces and, indeed, countries,” Makgoe said.

Representing the UFS on the panel was the Director of Community Engagement, Bishop Billy Ramahlele, who added that collaborations can be successful only if the leadership was exemplary.

“As the university, we have had many collaboration with various government departments, and great strides have been achieved only with the Department of Education under the leadership of MEC Makgoe,” said Ramahlele.

”With the MEC on board, the UFS ended up dedicating its South Campus in Bloemfontein to supporting Free State schools. We now have 70 schools that benefit from live television broadcasts of lessons by some of our outstanding academics. This also enables our best academics to make a valued contribution to empowering our teachers. It also allows the university to maximise scarce resources to attain social cohesion,” he said.

In his remarks, Kagiso Trust Trustee, Dean Zwo Nevhutalu, said that Kagiso Trust was looking forward to continue working with its partners to maximise outcomes through limited resources.

“Kagiso Trust will continue to work with the poor and the marginalised and there is no better partner than the government itself. The government provides basic services, and education is one of them. This allows us to be innovative and not just dump books and equipment at schools because we are forced to by our corporate social investment obligations. Therefore, we challenge the government also to be innovative in building a sustainable future partnership model in education,” he said.

Among the dignitaries attending the panel discussion were Kagiso Trust Chairman, Dr Frank Chikane, and the late Dr Beyers Naude’s family.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept