Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

New computer centre
2007-05-15

Attending the sod turning ceremony of the University of the Free State's (UFS) new computer centre were, from the left: Mr Abraham Makhalanyane (Director of Sikeyi Construction), Prof. Frederick Fourie (Rector and Vice-Chancellor of the UFS) and Mr Johann Ströhfeldt (Director of Ströhfeldt Construction Group). The centre, which will host about 815 computers, will be erected in a joint venture between the two construction companies.
Photo: Leonie Bolleurs
 

UFS gets new computer centre

The first sod of a new computer centre which will host about 815 computers was turned on the Main Campus of the University of the Free State (UFS) in Bloemfontein today.

The computer centre, which will be situated next to the UFS Sasol Library, will have various state-of-the-art computer laboratories. This is the first new building to be built on the Main Campus since the student centre, Thakaneng Bridge, and will be erected at a total project cost of R19 million.

“The computer centre is an important addition to our strategy to promote e-learning and is a sign of the new era of blended learning which students are now practicing,” said Prof. Frederick Fourie, Rector and Vice-Chancellor of the UFS, during the sod-turning ceremony.

According to Prof. Fourie the building will address students’ need for available computers. “All our students do not have a computer to assist them with their studies. The centre will empower them to complete their studies successfully and will provide them with the opportunity to conduct research in an academic environment,” said Prof. Fourie.

“Various laboratories for among others group work, as well as laboratories where students can work in a quiet environment on individual assignments will be established. Rooms for classes where a computer is a prerequisite to students as well as rooms for examinations, tests and practical sessions will be provided,” said Prof. Fourie.

The computers will not only comprise of traditional programmes, but rooms with programmes for open learning will also be established. Subject specific software will be installed in certain rooms to enable students to obtain a good knowledge of the subject fields.

The computer centre, which will be open seven days a week, will also be at the disposal of UFS staff.

“I am looking forward to this development on the Main Campus. It will be a thrill to see more than 800 students studying in the computer laboratories,” said Prof. Fourie.

The building will be erected in a joint venture between Ströhfeldt Construction Group and Sikeyi Construction, a black empowerment company. Mr Abraham Makhalanyane, Director of Sikeyi Construction, thanked the UFS for the opportunity to be involved with a project of this magnitude. “A project like this is a great responsibility and I am looking forward to work with a team of experts,” he said. Mr Johann Ströhfeldt, Director of Ströhfeldt Construction Group, said: “We have been working with the UFS on construction projects for more than 25 years. I believe that this project will also contribute to the pride and glory of the UFS.”

The expected completion date of the computer centre is May 2008.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
14 May 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept