Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Triumph of the Human Spirit – a symbol of hope
2015-08-24

Ahmed Kathrada discusses his latest book, Triumph of the Human Spirit.
Photo: Johan Roux

“A triumph of courage and determination over human frailty and weakness; a triumph of the new South Africa over the old.” – Ahmed Kathrada

Ahmed Kathrada, stalwart of South Africa’s liberation struggle, visited the Bloemfontein Campus on 18 August 2015 to launch his latest book, Triumph of the Human Spirit. Turning page after page, the reader travels back with Uncle Kathy – as he is fondly known – to revisit Robben Island with the more than 300 guests he has accompanied since 1994. With each photo – be it a celebrity or school child, head of state or famous artist, friend or royalty – the significance of the island is eternalised, right alongside Ahmed Kathrada.

Message of triumph
“Why this specific title for the book?” Prof André Keet, Director of the Institute for Reconciliation and Social Justice (IRSJ), asked during the book launch. “Robben Island,” Kathrada answered, “should not be remembered only as a place of suffering – that’s history. But the message of Robben Island is the message of triumph – triumph of the human spirit over all sorts of adversities.”

Speaking about Kathrada’s quiet but profound impact, Zaakirah Vadi, editor of the book, said “I think Uncle Kathy does not realise what an inspiration his own strength of spirit is”. The fight for human values and dignity was “honed and perfected in the cells of Robben Island,” she said. “It created the vision for a new South Africa and, as Uncle Kathy puts it, the triumph of the new South Africa over the old.”

UFS surprises Ahmed Kathrada with a birthday cake.
Photo: Johan Roux

Freedom was sacrifice
This triumph was not achieved without a cost, though. “No freedom comes on a platter,” Kathrada said. “Freedom was fought for. Freedom was sacrifice. Through the sacrifices of those who did not survive, we are still here to tell the story.”

And that is exactly what Triumph of the Human Spirit does. As Kgalema Motlanthe writes in the foreword, “This book serves as a preservation of history and a symbol of hope.”

Birthday celebration
Just as the event seemed to come to a close, members of the Student Representative Council carried a candle-lit cake – shaped in the number 86 – toward Kathrada. This surprise was organised by the UFS to celebrate his birthday on 21 August 2015. And, as the audience cheered and sang, Kathrada’s smile spread like a light across the hall.

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept