Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Letter to students from Prof Jonathan Jansen about student protest action at the UFS
2015-10-21

Dear Students

Student protest action at the University of the Free State

I wish to make clear that the senior leadership of the University of the Free State understands and supports the demands from students and their leaders that higher education be accessible to all students, especially the poor. For the past six years we have done everything in our power to meet that commitment to students who are academically talented, but simply cannot afford to pay; that is why our tuition fees remain among the lowest in the country. Our efforts to raise private funding have enabled thousands more students to study at the UFS than would have been possible on the government subsidy only. Whether it is the Staff Fund contributions (yes, our staff empty their pockets to support student fees) or the No Student Hungry (NSH) bursary programme (yes, we raise funds for food bursaries), we will continue our drive to fund students who cannot afford higher education. Let me repeat, no student with a solid academic record will be denied access to studies simply because they cannot pay.

Now, to the matter at hand. There is a national demand from students for a 0% fee increment for 2016. The Minister’s response, after consultation with stakeholders, was that universities should cap their 2016 fee increases at 6%. Despite this initiative from government, the protests continue on virtually all campuses across South Africa for the ‘no fee’ increase.

Our response, as the UFS leadership, is to continue engaging the SRC as the chosen leadership of our students in trying to negotiate a settlement on the matter. We have worked around the clock to be available to student leaders to find some resolution on 2016 fees. While we understand the demands of students, as university leaders, we can only work with the government subsidy we receive. Any agreement reached, cannot and must not place the university at academic and financial risk in its ability to deliver public higher education to the country - if that happens, everybody loses. Still, no matter what happens in terms of the response from government, the leadership door at the UFS remains open to finding a mutually acceptable solution to all parties in these deliberations.

Students, we are deeply concerned by the violence, intimidation and threats from the small group of protesting students. These dangerous and demeaning behaviours, like disrupting classes and verbally abusing students and staff, undermine the legitimate quest of students for relief concerning tuition fees. Such behaviour is completely unacceptable and the university will take action where required. We must also remember that we have an obligation to all 30 000 students whose right to learn without fear of violence and intimidation must be respected.

In conclusion, over the past few years we have worked hard to build a culture of mutual respect and embrace as we worked through some very difficult challenges on campus. You would have noticed that the university leadership responded quickly and sympathetically to reason and respect in difficult situations of rage and demonstration. A minority of students, with some outsiders, have come onto the campus to break down that culture in which, while we might disagree, we continue to work on the basis of mutual respect. I urge all students that, as we engage of this important problem of enabling greater access to higher education, we continue to remain true to the core values of our Human Project.

Best Regards

Prof Jonathan Jansen
Vice-Chancellor and Rector
University of the Free State


Letter to students from Prof Jonathan Jansen about student protest actions at the UFS (Pdf format)

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept