Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS Psychologist honoured for lifelong contribution
2015-12-09

Prof Dap Louw, distinguished professor and forensic psychologist from the University of the Free State, receives a Lifelong Achievers Award from the University of Johannesburg. From left is: Prof Theo Veldsman, head of the Department of Industrial Psychology and People Management at UJ, prof Louw, prof Deon de Bruin, Department of Industrial Psychology and People Management at UJ, and prof Daneel van Lill, dean at Faculty of Management at UJ.
Photo: Jan Potgieter, UJ

 

It is always good to be honoured by your own university, but it is even more special to be honoured by another university, according to Prof Dap Louw, distinguished professor and forensic psychologist from the University of the Free State (UFS), on an award he received from the University of Johannesburg (UJ).

On 5 November 2015, Prof Louw received the prestigious Lifelong Achievers Award from the Department of Industrial Psychology and People Management at UJ in recognition of the major contribution he has made during his career in psychology. He was one of two recipients of the award during this year’s UJ Top Achievers Awards Ceremony.

Prof Louw had great appreciation for his students and colleagues at the UFS, without who he would have been “without arms”.

Worthy legacy

The Lifelong Achievers Award is presented to retired academics that have, over their careers, consistently made significant contributions to their field, nationally and/or internationally, and have left behind a worthy legacy.

According to the description for the award, the recipient has left behind a legacy in his or her specific field which is gratefully acknowledged by all past, present and upcoming professional colleagues, students, clients and other stakeholders.

This description concludes with: “We are a better science and profession because of you”.

Career full of highlights

Prof Louw is the author or co-author of over 100 articles in accredited national and international journals, and he is an accredited NRF researcher.

He is the principal author and editor of several textbooks currently prescribed by 12 universities in South and Southern Africa. It is estimated that, over the years, more than 100 000 students have received their training via textbooks he has written with his wife, Prof Anet Louw.

Prof Louw holds a master’s and doctoral degree in Criminology, and a master’s and doctoral degree in Psychology. He is the only person in South Africa with these qualifications.
During his career as forensic psychologist, Prof Louw has testified in many familiar criminal cases in South Africa and Namibia.

The Academy of Science of South Africa presented him with the Stals Award for Psychology and he was honoured by The National Honor Society in Psychology in the USA as well.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept