Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Graduates challenged to fulfil their leadership obligations
2015-12-14



Procession frontline: seen making their way to the graduation ceremony are from left: Dr Khotso Mokhele (Chancellor of the UFS), Prof Busisiwe Bhengu (Chairperson of the South African Nursing Council), and Prof Jonathan Jansen (Vice-Chancellor of the UFS).
Photo: Johan Roux

The time for one-dimensional discourse was over, said Professor Busisiwe Bhengu, the guest speaker at this year’s Summer Graduation. Practical implementation of change was the step forward in forging the path into a brighter South Africa future.

During both the morning and afternoon ceremonies held at the University of the Free State (UFS) Bloemfontein Campus on 10 December 2015, the Chairperson of the South African Nursing Council, and Associate Professor at the University of KwaZulu-Natal, challenged the newly-graduated alumni to rise to the occasion, and be a part of the solution to our country’s diverse challenges.

Some of the pervasive hardships she highlighted were human immunodeficiency virus (HIV) and tuberculosis (TB), the escalating number of orphans and child-headed households, and the human resource shortages resulting from an ageing generation which is exiting the employment system through retirement.

Prior to dissolving the congregations, Dr Khotso Mokhele, the Chancellor of the UFS, said: “I was caught by the leadership challenge she [Prof Bhengu] threw out at the graduates because we indeed need courageous, creative and innovative leaders moving forward,” he said.

Dr Mokhele touched on South Africa’s dwindling economy, the leadership issues engulfing the government currently, the #FeesMustFall movement, and how students led a difficult dialogue and dictated the country’s trajectory as regards education, as well as the water scarcity we are facing. In closing, he warned that the graduates had lost the luxury of feeling led because of the fact that they now have a leadership obligation to fulfil.

Highlights of the day

Amongst 102 graduates from the UFS School of Medicine were two brothers from the Free State, Johann and Rudi Westraad who followed each other’s passion to become doctors.

Deputy Registrar at the UFS, Elna Van Pletzen, graduated with a Master’s in Higher Education Studies. Her thesis titled ”The implications of current legislative changes for academic freedom and institutional autonomy of South African higher education institutions”, focused on the amendment of Higher Education and Training Laws Amendment Act of 2012. In it, she tackled the subjects of academic freedom and the relationship between government and higher education institutions. Coincidently, her research was produced at a time when the subject of university autonomy was on the national agenda.

The occasion was not only a celebration of the students; teachers were also recognised for their dedication to quality education. Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS congratulated Dr Louise van den Berg (Faculty of Health Sciences) as well as Naquita Fernandes and Salomien Boshoff (both from the Faculty of Economic and Management Sciences) for their outstanding achievements. At a recent ceremony, Dr Van den Berg received the Vice-Chancellor’s Award for an individual teacher, and the Vice-Chancellor’s Award for the best teaching team was presented to Fernandes and Boshoff.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept