Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Researcher finds ways to serve justice efficiently
2016-01-07

Description: Prof Monwabisi Ralarala  Tags: Prof Monwabisi Ralarala

Prof Monwabisi Ralarala tackled the serving of justice from a linguistic viewpoint.
Photo: Supplied

In 2012, local and international media was saturated with reports of the Eugène Terre’Blanche murder trial. At the judgment, Judge John Horn read a lengthy extensive document, of which three pages were dedicated to voicing his concern about how police officers distort statements in the process of translation. Considering the fact that statements are the entry points to the criminal justice system, Prof Monwabisi Ralarala’s attention was drawn to the negative impact such distortion had insofar as the administration of justice was concerned. Of the three PhD degrees conferred by the University of the Free State (UFS) Faculty of Humanities at the 2015 Summer Graduation, one was in Language Practice with Prof Ralarala’s name on it.

Prof Ralarala’s research interests in language rights, forensic linguistics, and translation studies led him to use the Terre’Blanche trial as the basis for his second PhD case study titled: Implications and explications of police translation of complainants' sworn statements: evidence lost in translation. The doctoral dissertation focused on police stations in the Xhosa-speaking community of Khayelitsha in Cape Town.

Language and the law

When the victim of a crime approaches the South African Police Services (SAPS), the requirements are that a sworn statement be taken. However, as a prerequisite, the narration needs to be translated into English.  “The process unfolds in this manner: the complainant or the person laying the charges speaks in a language that they understand, and then the police officers translate that information into English because English is still the de facto language of record,” explained Prof Ralarala.

In the process of translation, the original narrative is lost, and so is some of the evidence. “They [the statements] have to be packaged in a certain way, in the form of a summary. As a police officer, you have to discard all the original narrative and create another narrative which is in English,” added the Associate Professor and Institutional Language Coordinator at the Cape Peninsula University of Technology.

Evidence is the basis of any court case and, when it is translated by police officers who do not hold the credentials of professional translators, a problem inevitably arises.

Because police officers are not trained in translation, “Some of the statements are filled with distortions, changing of information all together. In some cases, one would come across a case which was initially an assault but then - through the change and transformation, re-narration, retelling of the story by someone else - it becomes a case of attempted murder.”

Considering that a statement determines a suspect’s fate, it becomes all the more important to ensure that accuracy is upheld.

His internal and external supervisors, Prof Kobus Marais and Prof Russel Kaschula from the UFS and Rhodes University respectively stated that his PhD work has been hailed as a gem by international scholars. “According to one international assessor, he has made an exceptional contribution to the humanities and social sciences in general and to the fields of linguistics and translation studies in particular.”

Reshaping the landscape

According to Prof Ralarala, there are huge gaps in the translated versions of statements which create a problem when a ruling is made. Some of the recommendations put forward in his dissertation to bridge that gap are:

• to review the language policy insofar as the criminal justice system is concerned. The languages we speak are official and constitutionally embraced, and they hold the same status as English, hence they need to be used in criminal justice processes;
• to revisit the constitution and review if the provisions made for the Nguni languages are implemented;
• to supplement paper and pen with technology such as tape recorders. Statements can be revisited in cases where a controversy arises;
• to deploy professional translators and interpreters at police stations;
• to design a manual for police officers which contains all the techniques on how a statement should be taken.
• to enforce constitutional  provisions in order to reinforce the language implementation plan in as far as African languages are concerned .

These recommendations serve to undo or eliminate any perceived injustices perpetuated and institutionalised by current linguistic and formal practices in South Africa's criminal justice system.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept