Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Wayde the next big star, says Michael Johnson
2016-08-15

Description: Wayde with record Tags: Wayde with record

Wayde van Niekerk won South Africa’s first gold medal
at the Olympic Games in Rio de Janeiro.

Photos: Gallo Images

"Usain Bolt will be retiring soon, this could be the next star." That is how the legendary Michael Johnson explained the feat by the Kovsie athlete Wayde van Niekerk. Van Niekerk broke Johnson’s 17-year old world record in the 400m when he won gold in 43.03 at the Olympic Games in Rio de Janeiro on Sunday night (Monday morning, SA time). It was also South Africa’s first track gold medal in 96 years.

Johnson, whose record was beaten by 0.15, described the way in which the 24-year-old South African outperformed the 400m field as ‘a massacre’. The American won two Olympic 400m titles.

"The UFS congratulates Wayde and his youthful coach, our own Tannie Ans.”


"Van Niekerk is so young, what else can he do? Can he go under 43 seconds? It is something I thought I could do, but never did,” Johnson said on www.bbc.com. Van Niekerk thanked Johnson in a BBC Sport interview for setting an example. “I just went out there and did my best tonight,” the BA Marketing student from the University of the Free State (UFS) said.

Greatest UFS achievement in 114 years – Prof Jansen

“This is by far the greatest achievement of any UFS student in 114 years,” said Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS. “And that he broke one of the world’s toughest athletic records with his trademark grace and humility, makes him a role model to millions of South African youth.

“The UFS congratulates Wayde and his youthful coach, our own Tannie Ans.”

The 74-year-old Botha has been coaching Van Niekerk since 2012.  “She's an amazing woman," Van Niekerk said to www.sport24.co.za about her. “I'm just grateful that I can trust in her work and I think it speaks for itself.”

 

"Van Niekerk is so young, what else
can he do? Can he go under
43 seconds?”

Bolt and Twitter full of praise for South African inspiration

Bolt, who won his third consecutive 100m crown in Rio, interrupted his own media interviews at the Olympic stadium to congratulate Van Niekerk.

Twitter also erupted as many praised the UFS star. Gary Player, who is the manager of the SA golf team at the Olympics, tweeted:  “What a run! What a man! Congrats @WaydeDreamer #proudlySA #GOLDMEDAL #RSA”.

AB de Villiers, the South African One Day International cricket captain, also congratulated him: “What a special feeling waking up to the news of @WaydeDreamer winning the 400m and breaking the world record. Great inspiration to so many!”

 

Description: Wayde running Tags: Wayde running

More articles:
Wayde van Niekerk makes sprinting history
UFS community proud of Wayde’s hat trick of awards
Wayde nominated with SA’s best
Wayde one of the Adidas faces for Rio 2016
NBC tells Wayde’s story
Wayde, Karla crowned as KovsieSport’s best
UFS congratulates Wayde van Niekerk and other students for their national and international
Kovsies Wayde van Niekerk wins gold at the IAAF World Championship



 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept