Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

State of our campuses: UFS closes campuses until Friday 28 October 2016 to readjust academic programme
2016-10-13

The senior leadership of the University of the Free State (UFS) has carefully analysed all the risks facing the university in the current national crisis in higher education, which includes the possibility of losing the academic year. The university management has been engaged in back-to-back meetings with the student leadership, South African Police Service (SAPS), and other stakeholders over the past two days in an attempt to ensure the safety of all parties, and normalise the academic functioning of the UFS.  Unfortunately, we have been unable to arrive at an agreement about the resumption of the academic year regardless of the timing of the government response to students’ demands. This is further complicated by the fact that the university has received notice of intention of an  interdict to reopen with immediate effect.

Taking all of this into account, the senior leadership of the UFS has decided as follows:

  1. The UFS will not be shutting down for the remainder of 2016. The Bloemfontein and South Campuses will, however, be shutting down from Thursday 13 October 2016 until Friday 28 October 2016. These two weeks will be used for crucial and complex arrangements to be put in place to readjust the academic calendar and ensure that all students can complete their studies.
  2. The academic arrangements are focused on organising alternative modes of delivery of our programmes to support student learning. Academics will be working on readjusting their course materials for this purpose.
  3. The Bloemfontein Campus and the South Campuses will be closed for undergraduate and honours students. Administrative and academic staff will be working, as well as master's and doctoral students.
  4. Students in residence will have to vacate their rooms by 12:00 on Saturday 15 October 2016. Students who need help in this regard must please contact +27 51 401 2001 or send an email to hotline@ufs.ac.za.
  5. Arrangements will be made to accommodate international, master's, and doctoral students.
  6. The specific information about academic programmes will be communicated to students by their respective faculties as it becomes available.

The senior leadership wants to restate its commitment to free education as well as its willingness to stand together with students and other public universities to impress on government the urgency to decide on a time frame for the roll-out of free higher education for the poor and missing middle. During these two weeks the UFS will meet with the leadership of Universities South Africa to coordinate collective action in this regard.

 Consistent with this commitment the UFS leadership will roll out a series of activities to inform and educate students and the general public on different models and experiences of providing free higher education. 

 The UFS is deeply concerned about the possible securitisation of our campus as a way of solving this crisis.

 The UFS condemns in the strongest terms violence as a methodology to achieve ends in the context of a democratic state.We are, as always, committed to providing quality education and a conducive environment for learning.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept