Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS provides support network in each faculty
2016-10-28

Description: UFS provides support network in each faculty Tags: UFS provides support network in each faculty

Photo: iStock

Faculties at the University of the Free State (UFS) have been affected differently by the interruption of teaching time over the past few weeks.

Some faculties, like the Faculty of Law, have completed their curriculum, while other faculties like the Faculty of Natural and Agricultural Sciences require more teaching time. The Faculty of Health Sciences, for instance, cannot do teaching through alternative modes of delivery.

According to their needs, each faculty has prepared all the necessary learning material and instructions to support student learning. The standard and quality will be the same as if students have been attending classes. Some faculties require practical laboratory work as part of their curriculum and the necessary arrangements and adjustments have been made per department/faculty.

Constantly check official platforms
In order to assist with successfully completing the 2016 academic year, the UFS has launched the Academic Reboot Pack 2.0. It provides information around the carefully-crafted UFS academic rescue strategy and how to go about completing your work.

It is paramount to constantly check your faculty’s Blackboard organisation, the university’s main page, and your ufs4life emails to stay informed with emerging information regarding the state of the campus.

Faculties communicate work directly
Faculties at the UFS will communicate all outstanding academic work directly to the students registered in the faculty. For this, the university has created a UFS Support Network. Students should not hesitate to email or call if they need support.

Important contacts:    

Faculty of Economic and Management Sciences
Faculty Manager: Lizette Pretorius (LPretorius@ufs.ac.za or +27 51 401 2173)
Teaching and Learning Manager: Dr Corlia Janse van Vuuren (JanseVanVuurenEC@ufs.ac.za or +27 51 401 3691)
    
Faculty of Education    
Faculty Manager: Charmell Cardoso (CardosoC@ufs.ac.za or +27 51 401 9264)    
Teaching and Learning Manager: Prof Adri Beylefeld (BeylefeldAA@ufs.ac.za or +27 51 401 3125)
    
Faculty of Law    
Faculty Manager: Adri Kotze (Kotzea@ufs.ac.za or +27 51 401 2735)    
Teaching and Learning Manager: Dr Manie Moolman (MoolmanHJ@ufs.ac.za or +27 51 401 7084)

Faculty of Natural and Agricultural Sciences    
Faculty Manager: Lee-Ann Frazenburg (DamonsLE@ufs.ac.za or +27 51 401 3199)    
Teaching and Learning Manager: Elzmarie Oosthuizen (OosthuizenEM@ufs.ac.za or +27 51 401 2934)

Faculty of the Humanities    
Faculty Manager: Marica Coetsee (coetseem@ufs.ac.za or +27 51 401 2369)    
Teaching and Learning Manager: Jackie Storer (storerja@ufs.ac.za or +27 51 401 9579)
    
Faculty of Theology    
Faculty Manager: Ingrid Mostert (MosterIE@ufs.ac.za or +27 51 401 9079)    
Teaching and Learning Manager: Dr Thomas Resane (ResaneKT@ufs.ac.za or +27 51 401 9331)

Get your copy of the Academic Reboot Pack 2.0 on Blackboard under announcements or click here to download it.

The Academic Reboot Pack 1.0 is also available for you.
 
If students have any question or queries regarding the Academic Reboot Pack, they can send an email to: advising@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept