Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Parking at UFS for visitors
2007-11-10

UFS creates more parking for visitors

In its effort to make it easier for visitors to park on the Main Campus of the University of the Free State (UFS) in Bloemfontein, two paid parking areas will be put into operation as from Monday, 5 November 2007.

These parking areas are part of a comprehensive new parking strategy of the UFS, which is being implemented since September 2007. As part of the strategy, areas of the central campus have been reserved for staff and visitors and hundreds of new parking areas were developed for students at the entrance in Wynand Mouton Avenue (at the Faculty of Health Sciences) and the entrance in DF Malherbe Avenue (at the Agriculture Building).

“The paid parking areas for visitors, which are as close as possible to the busy and largely closed-off central campus, were created as an additional service to visitors,” said Ms Edma Pelzer, Director of Physical Resources at the UFS.

According to Ms Pelzer, persons who attend meetings, seminars or short courses, visiting colleagues, consultants, service providers, family of students and staff members, clients, etc. can make use of this parking.

“We have found that it is often difficult for visitors to obtain parking in or close to the central campus. Now they will have a choice to either park in the visitors parking areas at a minimal fee or to park in any of the open unreserved parking areas on campus,” said Ms Pelzer.

The areas, which will be closed off behind booms on weekdays from 06:00 until 18:00, are situated to the eastern side of the “Red Square”, east of the CR Swart and Idalia Loots Buildings and west of Campus Avenue North between the Psychology and the Flippie Groenewoud Buildings.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
2 November 2007

Parking for visitors: Important notice:

As from Monday 5 November 2007 two paid parking areas on the UFS Campus will be put into operation. The areas will be closed off behind booms on weekdays from 06:00 until 18:00. These will be manned and R3 per hour will be charged.
 

The following areas are involved:

  • P3: The area to the east of the “Red Square”, east of the CR Swart and Idalia Loots Buildings.

     
  • P6: The area to the east of Campus Avenue North between the Psychology and Flippie Groenewoud Buildings.

    The friendly co-operation of users of motor vehicles on campus is requested to allow this implementation to proceed as smoothly as possible.

Parking for visitors: More information

The strategy to create paid parking areas for visitors

The decision to reserve areas in the central campus areas for the convenience of visitors was taken as part of the comprehensive new parking strategy of the UFS approved by the Executive Management in May 2007 and which is being implemented since September.

All visitors need not park in these areas. Visitors may park for free on any open (unreserved) parking bay on campus. These paid parking areas for visitors, as close as possible to the busy and largely closed-off central campus, have been created as an additional service to visitors.

The strategy to close off parts of the central campus for staff members and visitors was implemented after sufficient alternative parking areas had been developed for students.

What is meant by the term “visitors”?

It includes all persons who are not students of staff members of the UFS and who visit the campus for one reason or another. Persons who attend meetings, seminars or short courses, visiting colleagues, consultants, service providers, family of students and staff members, et cetera are included.

As at present, it will, of course, be possible to make special arrangements with Protection Services to make it possible for VIP visitors to park as near as possible to their destinations.

No student or staff member will be actively prevented from parking in the area. They will, however, be discouraged by the fact that R3 per hour will be charged without exception.

The visitors’ parking area and access to it

  • P3: The area to the east of the “Red Square”, east of the CR Swart and Idalia Loots Buildings. The area is within easy walking distance for visitors to, among others, the following buildings: George du Toit Administration Building, Theology Building, Idalia Loots Building, CR Swart Building, Johannes Brill Building, Van der Merwe Scholz Hall.

    The area is conveniently accessible from the following entrances: Nelson Mandela Drive, Groenewoud Street and Wynand Mouton Drive.

     
  • P6: The area to the west of Campus Avenue North, between the Psychology and Flippie Groenewoud Buildings. The area is within easy walking distance for visitors to all the academic buildings in the central campus, such as the Chemistry Building, Stef Coetzee Building, the Geography Building, et cetera and located directly opposite the general information point on the Thakaneng Bridge.

    The area is conveniently accessible from the following entrances: Fürstenburg Road and DF Malherbe Avenue (at the Agriculture Building).

     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept