Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

UFS finances are fundamentally sound
2007-12-01

The finances of the University of the Free State (UFS) remain fundamentally sound and a higher than expected surplus of about R26 million was achieved in the 2007 budget.

This announcement was made last week during the last meeting of the UFS Council by Prof. Frederick Fourie, Rector and Vice-Chancellor.

“Up to now, we could finance the considerable investments in the infrastructure from discretionary funds, in spite of the fact that Council granted us permission during 2005/06 to take up a loan of R50 million for this purpose,” said Prof. Fourie.

The higher than expected surplus of about R26 million will be used among other things for the financing of infrastructure in order to further postpone the taking up of a loan.

In support of the drive to reposition the UFS nationally as a university that is successfully integrating excellence and diversity, R5 million will be made available from the surplus for this purpose.

The Council also approved the following allocations for 2008 for the key strategic pillars of a good practice budget for the university:

Information sources: R21,1 million
IT infrastructure: R3,5 million
Replacing expensive equipment: R7,05 million
Research: R18,1 million
Capital expenditure: R28,2 million
Maintenance capital assets: R18,2 million
Reserves: R6,3 million
Personal computers for the computer laboratory: R3,5 million

For the Qwaqwa Campus R2,5 million has been set aside for these issues.

In terms of strategic priorities R8 million was allocated for the academic clusters, R2 million for equitability, diversity and redress and R6 million for equity.

The projected income for 2008 will be R849 million, while the projected expenditure, excluding transfers, will be R694 million.

“Council further approved that discretionary strategic funds be largely voted to the further upgrading of the physical infrastructure, especially the Chemistry Building, the computer laboratory building, examination venues and the Joolkol,” said Prof. Fourie.

According to Prof. Fourie, funds have been reserved for the development of the academic clusters, as well as the continuation and acceleration of the transformation programme of the UFS.

“We have also managed to revise the conditions of employment of contract appointments and align it with the latest labour practices. The phasing in of the fringe benefits of this specific group of staff members will commence in 2008,” said Prof. Fourie.

Given the dependence of the income of the UFS on student numbers, a task team was formed last year to investigate the continued financial sustainability of the UFS. The core of this task team’s recommendations is:

to increase the third income stream by using the academic clusters as the main strategy; and to apply strategies such as the recruitment and extension of the postgraduate and foreign student corps, increase the income from donations and fundraising, etc.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
30 November 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept