Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Research into surrogate milk important to wildlife conservation
2017-05-08

Description: Prof Garry Osthoff  Tags: Prof Garry Osthoff

Prof Gary Osthoff from the UFS Department of
Microbial, Biochemical and Food Biotechnology,
will soon work on a milk formula for elephants.
Photo: Supplied

Research is being done at the University of the Free State (UFS) to analyse and synthetically imitate the unique milk of various wildlife species. This research is not only of scientific value, but also serves the conservation of South Africa’s wildlife species. At the forefront of this research is Prof Garry Osthoff from the Department of Microbial, Biochemical and Food Biotechnology.

Orphaned rhino calf pulled through with surrogate milk

“There is still a lot of research to be done. Naturally the research is of scientific importance, but with surrogate milk having the same composition as the mother’s milk of a specific species, orphaned calves or cubs of that species could be pulled through during a difficult time of weaning. Bearing in mind that exotic animals fetch thousands and even millions of rands at auctions, it goes without saying a game farmer will do everything possible to provide only the best nourishment to such an orphaned animal. In such a case, synthetically-manufactured milk would be the right choice,” says Prof Osthoff.

The fruits of his research were recently demonstrated in Germany when a rhino calf was left orphaned in the Leipzig Zoo. Prof Osthoff’s article: “Milk composition of a free-ranging white rhinoceros during late lactation” was used as a directive for applying surrogate milk for horse foals (which is already commercially available), since the composition of horse and rhino milk largely corresponds. The surrogate milk was used with great success and the rhino calf is flourishing. He mentions that such an orphan is often given the wrong nourishment with the best intentions, resulting in the starvation of the animal despite the amount of cow’s milk it devours.

With surrogate milk having the same
composition as the mother’s milk of a
specific species, orphaned calves or
cubs of that species could be pulled
through during the difficult time
of weaning.

Milk formula for baby elephants in the pipeline
With baby elephants left orphaned due to the increase in elephant poaching for their ivory, several attempts have been made to create a milk formula in order to feed these elephants. To date, many elephants have died in captivity from side effects such as diarrhoea as a result of the surrogate formula which they were fed.

Prof Osthoff recently received a consignment of frozen milk which he, together with researchers from Zimbabwe, will use to work on a milk formula for elephants. They are studying the milk in a full lactation period of two years. During lactation, the composition of the milk changes to such an extent that a single surrogate formula will not be sufficient. Four different formulas should probably be designed.

Prof Osthoff says that of the different species he has researched, elephants are the most interesting and deviate most from the known species.

Although his research to develop surrogate milk is adding much value to the wildlife industry, and although he finds this part of his work very exciting, his research focus is on food science and nutrition. “What is currently authentic in milk research is the study of the fat globules with content, the structure and composition of the casein micelle, and the prebiotic sugars. The knowledge which is gained helps to improve the processing, development of new food products, and development of food products for health purposes,” says Prof Osthoff.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept