Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2021 | Story André Damons | Photo Charl Devenish
Ebeth Grobbelaar is a Scientific Manager in the South African Doping Control Laboratory (SADoCoL) who is responsible for the review and approval of results at SADoCoL, to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

For Ebeth Grobbelaar, Scientific Manager in the South African Doping Control Laboratory (SADoCoL) – which is housed by the University of the Free State (UFS) – her work at the laboratory is profound, as fairness on and off the playing field is vital to her.

“Creating a fair playing field for athletes to compete carries a heavy responsibility, as an anti-doping violation impacts the athlete’s career,” says Grobbelaar, who is responsible for the review and approval of results at SADoCoL to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

Women are the cogs in the wheel

According to her, anabolic steroids, the multiple analytical disciplines, and rapidly changing technical requirements from WADA have attracted her to the sciences of anti-doping. Sixty percent of her colleagues at SADoCoL are women.  “They are the cogs in the wheel, ensuring the laboratory's smooth operation, taking daily challenges in their stride, and excelling in what they do as analysts and administrative staff,” says Grobbelaar.

Grobbelaar says there are many options in the anti-doping field for women inside and outside of the laboratory. Some of the most influential people in the anti-doping community are women – in their roles as laboratory directors, leading researchers, directors of athlete passport management units for international sports federations, or national anti-doping agencies in various capacities.

With all the responsibilities, come challenges and pressure – especially in a year when the Olympic Games take place. 

Women should learn how to say ‘no’ 

“An Olympic year always has additional stress due to the large number of samples before the games. This year, the pressure is more, with not all accredited laboratories operational, as well as disrupted testing schedules due to COVID-19.  Enabling athletes to compete in fairness on the world stage is a responsibility and a privilege.”

“My faith is my anchor.  As far as possible, I try to leave my work behind when I leave the laboratory, and concentrate on enjoyable things such as gardening, my dog, reading, and walking with my dog. On challenging days, something sweet also helps,” explains Grobbelaar the pressure and how she copes with it. 

This Women’s Month, Grobbelaar says, women should learn how to say ‘no’ to create time for rest and play. Says Grobbelaar: “For many women, ‘doing your best’ or saying yes means working yourself to the point of a mental and physical breakdown. Having the courage to say no, loving oneself through rest and play, replenishing our spirits, and realising that we are unique and precious in God’s eyes, is a challenge that many women face.” 

“Rest and play can take different forms, such as having coffee with a friend or being creative.  The important thing is that your rest or play activity brings joy to your soul and energises you. Ask your friends to support and assist you,” she concludes. 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept