Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2021 | Story André Damons | Photo Charl Devenish
Ebeth Grobbelaar is a Scientific Manager in the South African Doping Control Laboratory (SADoCoL) who is responsible for the review and approval of results at SADoCoL, to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

For Ebeth Grobbelaar, Scientific Manager in the South African Doping Control Laboratory (SADoCoL) – which is housed by the University of the Free State (UFS) – her work at the laboratory is profound, as fairness on and off the playing field is vital to her.

“Creating a fair playing field for athletes to compete carries a heavy responsibility, as an anti-doping violation impacts the athlete’s career,” says Grobbelaar, who is responsible for the review and approval of results at SADoCoL to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

Women are the cogs in the wheel

According to her, anabolic steroids, the multiple analytical disciplines, and rapidly changing technical requirements from WADA have attracted her to the sciences of anti-doping. Sixty percent of her colleagues at SADoCoL are women.  “They are the cogs in the wheel, ensuring the laboratory's smooth operation, taking daily challenges in their stride, and excelling in what they do as analysts and administrative staff,” says Grobbelaar.

Grobbelaar says there are many options in the anti-doping field for women inside and outside of the laboratory. Some of the most influential people in the anti-doping community are women – in their roles as laboratory directors, leading researchers, directors of athlete passport management units for international sports federations, or national anti-doping agencies in various capacities.

With all the responsibilities, come challenges and pressure – especially in a year when the Olympic Games take place. 

Women should learn how to say ‘no’ 

“An Olympic year always has additional stress due to the large number of samples before the games. This year, the pressure is more, with not all accredited laboratories operational, as well as disrupted testing schedules due to COVID-19.  Enabling athletes to compete in fairness on the world stage is a responsibility and a privilege.”

“My faith is my anchor.  As far as possible, I try to leave my work behind when I leave the laboratory, and concentrate on enjoyable things such as gardening, my dog, reading, and walking with my dog. On challenging days, something sweet also helps,” explains Grobbelaar the pressure and how she copes with it. 

This Women’s Month, Grobbelaar says, women should learn how to say ‘no’ to create time for rest and play. Says Grobbelaar: “For many women, ‘doing your best’ or saying yes means working yourself to the point of a mental and physical breakdown. Having the courage to say no, loving oneself through rest and play, replenishing our spirits, and realising that we are unique and precious in God’s eyes, is a challenge that many women face.” 

“Rest and play can take different forms, such as having coffee with a friend or being creative.  The important thing is that your rest or play activity brings joy to your soul and energises you. Ask your friends to support and assist you,” she concludes. 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept