Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2021 | Story André Damons | Photo Charl Devenish
Ebeth Grobbelaar is a Scientific Manager in the South African Doping Control Laboratory (SADoCoL) who is responsible for the review and approval of results at SADoCoL, to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

For Ebeth Grobbelaar, Scientific Manager in the South African Doping Control Laboratory (SADoCoL) – which is housed by the University of the Free State (UFS) – her work at the laboratory is profound, as fairness on and off the playing field is vital to her.

“Creating a fair playing field for athletes to compete carries a heavy responsibility, as an anti-doping violation impacts the athlete’s career,” says Grobbelaar, who is responsible for the review and approval of results at SADoCoL to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

Women are the cogs in the wheel

According to her, anabolic steroids, the multiple analytical disciplines, and rapidly changing technical requirements from WADA have attracted her to the sciences of anti-doping. Sixty percent of her colleagues at SADoCoL are women.  “They are the cogs in the wheel, ensuring the laboratory's smooth operation, taking daily challenges in their stride, and excelling in what they do as analysts and administrative staff,” says Grobbelaar.

Grobbelaar says there are many options in the anti-doping field for women inside and outside of the laboratory. Some of the most influential people in the anti-doping community are women – in their roles as laboratory directors, leading researchers, directors of athlete passport management units for international sports federations, or national anti-doping agencies in various capacities.

With all the responsibilities, come challenges and pressure – especially in a year when the Olympic Games take place. 

Women should learn how to say ‘no’ 

“An Olympic year always has additional stress due to the large number of samples before the games. This year, the pressure is more, with not all accredited laboratories operational, as well as disrupted testing schedules due to COVID-19.  Enabling athletes to compete in fairness on the world stage is a responsibility and a privilege.”

“My faith is my anchor.  As far as possible, I try to leave my work behind when I leave the laboratory, and concentrate on enjoyable things such as gardening, my dog, reading, and walking with my dog. On challenging days, something sweet also helps,” explains Grobbelaar the pressure and how she copes with it. 

This Women’s Month, Grobbelaar says, women should learn how to say ‘no’ to create time for rest and play. Says Grobbelaar: “For many women, ‘doing your best’ or saying yes means working yourself to the point of a mental and physical breakdown. Having the courage to say no, loving oneself through rest and play, replenishing our spirits, and realising that we are unique and precious in God’s eyes, is a challenge that many women face.” 

“Rest and play can take different forms, such as having coffee with a friend or being creative.  The important thing is that your rest or play activity brings joy to your soul and energises you. Ask your friends to support and assist you,” she concludes. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept