Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2021 | Story André Damons | Photo Charl Devenish
Ebeth Grobbelaar is a Scientific Manager in the South African Doping Control Laboratory (SADoCoL) who is responsible for the review and approval of results at SADoCoL, to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

For Ebeth Grobbelaar, Scientific Manager in the South African Doping Control Laboratory (SADoCoL) – which is housed by the University of the Free State (UFS) – her work at the laboratory is profound, as fairness on and off the playing field is vital to her.

“Creating a fair playing field for athletes to compete carries a heavy responsibility, as an anti-doping violation impacts the athlete’s career,” says Grobbelaar, who is responsible for the review and approval of results at SADoCoL to ensure compliance with the technical requirements of the World Anti-Doping Agency (WADA).

Women are the cogs in the wheel

According to her, anabolic steroids, the multiple analytical disciplines, and rapidly changing technical requirements from WADA have attracted her to the sciences of anti-doping. Sixty percent of her colleagues at SADoCoL are women.  “They are the cogs in the wheel, ensuring the laboratory's smooth operation, taking daily challenges in their stride, and excelling in what they do as analysts and administrative staff,” says Grobbelaar.

Grobbelaar says there are many options in the anti-doping field for women inside and outside of the laboratory. Some of the most influential people in the anti-doping community are women – in their roles as laboratory directors, leading researchers, directors of athlete passport management units for international sports federations, or national anti-doping agencies in various capacities.

With all the responsibilities, come challenges and pressure – especially in a year when the Olympic Games take place. 

Women should learn how to say ‘no’ 

“An Olympic year always has additional stress due to the large number of samples before the games. This year, the pressure is more, with not all accredited laboratories operational, as well as disrupted testing schedules due to COVID-19.  Enabling athletes to compete in fairness on the world stage is a responsibility and a privilege.”

“My faith is my anchor.  As far as possible, I try to leave my work behind when I leave the laboratory, and concentrate on enjoyable things such as gardening, my dog, reading, and walking with my dog. On challenging days, something sweet also helps,” explains Grobbelaar the pressure and how she copes with it. 

This Women’s Month, Grobbelaar says, women should learn how to say ‘no’ to create time for rest and play. Says Grobbelaar: “For many women, ‘doing your best’ or saying yes means working yourself to the point of a mental and physical breakdown. Having the courage to say no, loving oneself through rest and play, replenishing our spirits, and realising that we are unique and precious in God’s eyes, is a challenge that many women face.” 

“Rest and play can take different forms, such as having coffee with a friend or being creative.  The important thing is that your rest or play activity brings joy to your soul and energises you. Ask your friends to support and assist you,” she concludes. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept