Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 August 2021 | Story André Damons | Photo Charl Devenish
Itumeleng Mabusa, analyst in the South African Doping Control Laboratory (SADoCoL) hosted by the University of the Free State (UFS), says women in South Africa and the world at large are still facing the most discrimination in the workplace.

It is time that women realise their brilliant leadership qualities. Women are more sensitive and intuitive and bring a different dimension of leadership to the workplace.

For Itumeleng Mabusa, analyst at the South African Doping Control Laboratory (SADoCoL) hosted by the University of the Free State (UFS), this is one of the ways to address the challenges that women still face. Mabusa believes the opportunities for women are not as prominent as it should be and believe that gender discrimination in the workplace still exists and should be addressed.

Mabusa, who has been a member of SADoCoL since April 2015, analyses urine samples from athletes to test for prohibited drugs in sports. Her day-to-day work involves sample extractions, running the extracts on analytical instruments such as the high-performance liquid chromatography (HPLC) or gas chromatography (GC) machines, and analysing the data to see if there are any performance-enhancing drugs that are prohibited by the World Anti-Doping Agency (WADA).

Women still face the most discrimination in the workplace

According to her, women in South Africa and the world at large are still facing the most discrimination in the workplace. Women still have to fight to get their views across, and they are still not taken seriously because of patriarchal stereotypes. 

“In some corporate settings, women are still remunerated as well as men, regardless of both being in the same position and equally talented. It is hard enough to be equally recognised as a professional in your own field of expertise as a woman, which is exacerbated if you are a woman of colour. The other most pressing issue is the high prevalence of gender-based violence, with women holding the record for high incidents of violence against them,” says Mabusa.

Addressing the challenges

These challenges, says Mabusa, can be addressed by allowing women to do any job that a man can do. Women in leadership are often disregarded and their judgments are always questioned, she says. 

“There has to be more outreach programmes to teach young girls at a very young age that they can be leaders in absolutely any career they desire, from science, engineering, and aviation – to name but a few. Most importantly, leaders should groom the women in their organisations to one day take over the higher positions, and not always leave them for men.” 

“My opinion regarding issues of gender-based violence is that it must be addressed from an early age, in addition to teaching and preparing the girl-child to fend off danger. I think the boy child should also be empowered and taught to be self-sufficient, and not be egotistical, but respectful towards women of any age. Boys and girls should be groomed to be able to co-exist cohesively in a society where they both have equal chances of achieving greatness.”  
What is the most interesting thing to you in the field of anti-doping science?

As a WADA-certified scientist, Mabusa says the best and the worst part of her field is when she has to take part in external quality assessment scheme (EQAS). All the WADA-accredited laboratories in the world must take part in the analyses of the same samples three times a year at the same time. 

“These are both nerve-wracking and exciting all at the same time; it always reminds me of the feeling I used to get when I had to write final exams. I like comparing my statistical results with the rest of the world, for example finding out what quantitative concentration values and Z-scores the rest of the world obtained for their analysis compared to mine.” 

“It is also very interesting to find the scientific evidence and analysis you completed, led to the prosecution of an athlete due to an anti-doping rule violation. I also love doing scientific research and being able to share it with the rest of the world. Working with different analytical equipment and different software – from GC-MS and LC-MS to LC-UV – is exciting,” says Mabusa.  

Community value impacts life as a scientist and woman

Mabusa says as a woman, especially a black woman being given the chance to use her scientific skills as a WADA-certified scientist, it is an honour, as it gives everyone competing in sports in Africa a fair chance to compete. By testing these athletes, she explains, she is making sure that everyone plays fairly without their performances being influenced by any prohibited drugs. 

“Among the prohibited drugs are also drugs of abuse, including for example, cocaine and MDMA (ecstasy). By testing athletes for these drugs, I am helping the athletic community to try to stay off illegal recreational drugs.” 

Playing her part in the Olympics and coping with challenges

With the Olympic Games taking place between July and August, Mabusa says it is a great feeling to know that she is part of a team of scientists who are producing test reports that will ultimately determine whether tested athletes will be eligible or banned from representing their African countries at the Games.

According to her, they have a high volume of samples to analyse on a daily basis, because of all the sports competitions in South Africa and the continent in preparation for the Tokyo Olympics. 

Mabusa says the challenges associated with this work include the extremely strict rules of analysis, called the International Standard of Laboratories (ISL), set for all accredited laboratories to follow. The strict timelines that they all have to stick to in order to report the results to clients on time – no matter how many samples there are – is also a challenge. 

“This means analysing a large amount of data as accurately as possible in the shortest time I can. A skill I had to harness and embrace and learned to perfect over time, is the ability to pay very close attention to detail; this comes in handy when dealing with analytical work.” 

“There is also countless paperwork to fill in in order to follow a chain of custody for a sample. Each and every step gets recorded, from sample reception all the way to reporting; paying attention to detail comes in quite handy through all this,” says Mabusa.  

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept